Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 27(11): 115602, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26878255

RESUMO

We report nano-selective area growth (NSAG) of BGaN by MOCVD on AlN/Si(111) and GaN templates resulting in 150 nm single crystalline nanopyramids. This is in contrast to unmasked or micro-selective area growth, which results in a multi-crystalline structure on both substrates. Various characterization techniques were used to evaluate NSAG as a viable technique to improve BGaN material quality on AlN/Si(111) using results of GaN NSAG and unmasked BGaN growth for comparison. Evaluation of BGaN nanopyramid quality, shape and size uniformity revealed that the growth mechanism is the same on both the templates. Further STEM analysis of BGaN nanopyramids on AlN/Si (111) templates confirmed that these are single-crystalline structures without any dislocations, likely due to single nucleation occurring in the 80 nm mask opening. CL results correspond to boron content between 1.7% and 2.0% in the nanopyramids. We conclude that NSAG is promising for growth of high-quality BGaN nanostructures and complex nano-heterostructures, especially for low-cost silicon substrates.

2.
Nanotechnology ; 23(45): 455707, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23089619

RESUMO

Using elastic scattering theory we show that a small set of energy dispersive x-ray spectroscopy (EDX) measurements is sufficient to experimentally evaluate the scattering function of electrons in high-angle annular dark field scanning transmission microscopy (HAADF-STEM). We then demonstrate how to use this function to transform qualitative HAADF-STEM images of InGaN layers into precise, quantitative chemical maps of the indium composition. The maps obtained in this way combine the resolution of HAADF-STEM and the chemical precision of EDX. We illustrate the potential of such chemical maps by using them to investigate nanometer-scale fluctuations in the indium composition and their impact on the growth of epitaxial InGaN layers.

3.
Mol Reprod Dev ; 65(1): 73-85, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12658636

RESUMO

In the present study, ribosomal RNA (rRNA) gene activation, monitored through nucleolus development, was studied by autoradiography following (3)H-uridine incubation, transmission electron microscopy, and immunofluorescence confocal laser scanning microscopy of key nucleolar proteins involved in rRNA transcription (topoisomerase I, upstream binding factor, and RNA polymerase I) and processing (fibrillarin, nucleolin, and nucleophosmin) in in vivo developed, in vitro produced, and parthenogenetic bovine embryos. In general, in vivo developed embryos displayed formation of fibrillo-granular nucleoli during the 4th post-fertilization cell cycle. During the previous stages of development, nucleolus precursor bodies (NPBs) were observed. However, on some occasions the initial steps of nucleolus formation were observed already at the 2- and 4-cell stage in cases where such embryos were collected from superovulated animals together with later embryonic stages presenting nucleolar development and autoradiographic labeling. The in vitro produced embryos displayed very synchronous formation of fibrillo-granular nucleoli and autoradiographic labeling during the 4th cell cycle. In vivo developed and in vitro produced embryos displayed allocation of nucleolar proteins to fibrillar and granular compartments of the developing nucleoli during the 4th cell cycle. The parthenogenetic embryos typically displayed formation of fibrillo- granular nucleoli during the 5th cell cycle and autoradiographic labeling was not observed until the morula stage. Moreover, the 1-, 2-, and 4-cell parthenogenetic embryos practically lacked NPBs. On the other hand, parthenogenetic embryos displayed allocation of nucleoar proteins to nuclear entities during the 4th cell cycle. In conclusion, both in vivo developed and in vitro produced bovine embryos displayed activation of transcription and nucleolar development during the 4th cell cycle. However, in vivo developed embryos flushed together with later developmental stages displayed premature activation of these processes. Parthenogenetic bovine embryos, on the other hand, displayed a delayed activation.


Assuntos
Fase de Clivagem do Zigoto/metabolismo , Proteínas Nucleares/metabolismo , Animais , Bovinos , Fase de Clivagem do Zigoto/ultraestrutura , Feminino , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica , Partenogênese/fisiologia , Fosfoproteínas/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Nucleolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA