Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864377

RESUMO

Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.


Histones, traditionally known for organizing and regulating DNA in eukaryotes and archaea, have recently been discovered in bacteria, opening up a new frontier in our understanding of genome organization across the domains of life. Our study investigates the largely unexplored DNA-binding properties of bacterial histones, focusing on HBb in Bdellovibrio bacteriovorus. We reveal that HBb is essential for bacterial survival and exhibits DNA-binding properties similar to archaeal and eukaryotic histones. However, unlike eukaryotic and archaeal histones, which wrap DNA, HBb bends DNA without sequence specificity. This work not only broadens our understanding of DNA organization across different life forms but also suggests that bacterial histones may have diverse roles in genome organization.

2.
Nucleic Acids Res ; 51(22): 12150-12160, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953329

RESUMO

Sequence-specific protein-DNA interactions are crucial in processes such as DNA organization, gene regulation and DNA replication. Obtaining detailed insights into the recognition mechanisms of protein-DNA complexes through experiments is hampered by a lack of resolution in both space and time. Here, we present a molecular simulation approach to quantify the sequence specificity of protein-DNA complexes, that yields results fast, and is generally applicable to any protein-DNA complex. The approach is based on molecular dynamics simulations in combination with a sophisticated steering potential and results in an estimate of the free energy difference of dissociation. We provide predictions of the nucleotide specific binding affinity of the minor groove binding Histone-like Nucleoid Structuring (H-NS) protein, that are in agreement with experimental data. Furthermore, our approach offers mechanistic insight into the process of dissociation. Applying our approach to the major groove binding ETS domain in complex with three different nucleotide sequences identified the high affinity consensus sequence, quantitatively in agreement with experiments. Our protocol facilitates quantitative prediction of protein-DNA complex stability, while also providing high resolution insights into recognition mechanisms. As such, our simulation approach has the potential to yield detailed and quantitative insights into biological processes involving sequence-specific protein-DNA interactions.


Assuntos
Proteínas de Ligação a DNA , DNA , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica
3.
Chembiochem ; 25(9): e202400020, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470946

RESUMO

Transcription factors (TFs) play a central role in gene regulation, and their malfunction can result in a plethora of severe diseases. TFs are therefore interesting therapeutic targets, but their involvement in protein-protein interaction networks and the frequent lack of well-defined binding pockets render them challenging targets for classical small molecules. As an alternative, peptide-based scaffolds have proven useful, in particular with an α-helical active conformation. Peptide-based strategies often require extensive structural optimization efforts, which could benefit from a more detailed understanding of the dynamics in inhibitor/protein interactions. In this study, we investigate how truncated stapled α-helical peptides interact with the transcription factor Nuclear Factor-Y (NF-Y). We identified a 13-mer minimal binding core region, for which two crystal structures with an altered C-terminal peptide conformation when bound to NF-Y were obtained. Subsequent molecular dynamics simulations confirmed that the C-terminal part of the stapled peptide is indeed relatively flexible while still showing defined interactions with NF-Y. Our findings highlight the importance of flexibility in the bound state of peptides, which can contribute to overall binding affinity.


Assuntos
Fator de Ligação a CCAAT , Simulação de Dinâmica Molecular , Peptídeos , Ligação Proteica , Peptídeos/química , Peptídeos/metabolismo , Fator de Ligação a CCAAT/metabolismo , Fator de Ligação a CCAAT/química , Sítios de Ligação , Humanos , Cristalografia por Raios X , Sequência de Aminoácidos
4.
PLoS Comput Biol ; 18(5): e1010113, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617357

RESUMO

Hoogsteen (HG) base pairing is characterized by a 180° rotation of the purine base with respect to the Watson-Crick-Franklin (WCF) motif. Recently, it has been found that both conformations coexist in a dynamical equilibrium and that several biological functions require HG pairs. This relevance has motivated experimental and computational investigations of the base-pairing transition. However, a systematic simulation of sequence variations has remained out of reach. Here, we employ advanced path-based methods to perform unprecedented free-energy calculations. Our methodology enables us to study the different mechanisms of purine rotation, either remaining inside or after flipping outside of the double helix. We study seven different sequences, which are neighbor variations of a well-studied A⋅T pair in A6-DNA. We observe the known effect of A⋅T steps favoring HG stability, and find evidence of triple-hydrogen-bonded neighbors hindering the inside transition. More importantly, we identify a dominant factor: the direction of the A rotation, with the 6-ring pointing either towards the longer or shorter segment of the chain, respectively relating to a lower or higher barrier. This highlights the role of DNA's relative flexibility as a modulator of the WCF/HG dynamic equilibrium. Additionally, we provide a robust methodology for future HG proclivity studies.


Assuntos
DNA , Purinas , Pareamento de Bases , DNA/química , DNA/genética , Ligação de Hidrogênio , Conformação Molecular , Conformação de Ácido Nucleico , Termodinâmica
5.
Nucleic Acids Res ; 48(4): 2156-2172, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31925429

RESUMO

H-NS proteins act as osmotic sensors translating changes in osmolarity into altered DNA binding properties, thus, regulating enterobacterial genome organization and genes transcription. The molecular mechanism underlying the switching process and its conservation among H-NS family members remains elusive. Here, we focus on the H-NS family protein MvaT from Pseudomonas aeruginosa and demonstrate experimentally that its protomer exists in two different conformations, corresponding to two different functional states. In the half-opened state (dominant at low salt) the protein forms filaments along DNA, in the fully opened state (dominant at high salt) the protein bridges DNA. This switching is a direct effect of ionic strength on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of MvaT. The asymmetric charge distribution and intramolecular interactions are conserved among the H-NS family of proteins. Therefore, our study establishes a general paradigm for the molecular mechanistic basis of the osmosensitivity of H-NS proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , DNA/química , Transativadores/química , Proteínas de Bactérias/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Concentração Osmolar , Domínios Proteicos/genética , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Transativadores/genética
6.
Nucleic Acids Res ; 47(21): 11069-11076, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665440

RESUMO

DNA predominantly contains Watson-Crick (WC) base pairs, but a non-negligible fraction of base pairs are in the Hoogsteen (HG) hydrogen bonding motif at any time. In HG, the purine is rotated ∼180° relative to the WC motif. The transitions between WC and HG may play a role in recognition and replication, but are difficult to investigate experimentally because they occur quickly, but only rarely. To gain insight into the mechanisms for this process, we performed transition path sampling simulations on a model nucleotide sequence in which an AT pair changes from WC to HG. This transition can occur in two ways, both starting with loss of hydrogen bonds in the base pair, followed by rotation around the glycosidic bond. In one route the adenine base converts from WC to HG geometry while remaining entirely within the double helix. The other route involves the adenine leaving the confines of the double helix and interacting with water. Our results indicate that this outside route is more probable. We used transition interface sampling to compute rate constants and relative free energies for the transitions between WC and HG. Our results agree with experiments, and provide highly detailed insights into the mechanisms of this important process.


Assuntos
Pareamento de Bases , Sequência de Bases , DNA/química , Ligação de Hidrogênio , Termodinâmica
7.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917581

RESUMO

Bacillus subtilis forms dormant spores upon nutrient depletion. Germinant receptors (GRs) in spore's inner membrane respond to ligands such as L-alanine, and trigger spore germination. In B. subtilis spores, GerA is the major GR, and has three subunits, GerAA, GerAB, and GerAC. L-Alanine activation of GerA requires all three subunits, but which binds L-alanine is unknown. To date, how GRs trigger germination is unknown, in particular due to lack of detailed structural information about B subunits. Using homology modelling with molecular dynamics (MD) simulations, we present structural predictions for the integral membrane protein GerAB. These predictions indicate that GerAB is an α-helical transmembrane protein containing a water channel. The MD simulations with free L-alanine show that alanine binds transiently to specific sites on GerAB. These results provide a starting point for unraveling the mechanism of L-alanine mediated signaling by GerAB, which may facilitate early events in spore germination.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Membrana Celular/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Esporos Bacterianos/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Domínios Proteicos , Esporos Bacterianos/metabolismo
8.
PLoS Comput Biol ; 15(3): e1006845, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845209

RESUMO

Bacteria contain several nucleoid-associated proteins that organize their genomic DNA into the nucleoid by bending, wrapping or bridging DNA. The Histone-like Nucleoid Structuring protein H-NS found in many Gram-negative bacteria is a DNA bridging protein and can structure DNA by binding to two separate DNA duplexes or to adjacent sites on the same duplex, depending on external conditions. Several nucleotide sequences have been identified to which H-NS binds with high affinity, indicating H-NS prefers AT-rich DNA. To date, highly detailed structural information of the H-NS DNA complex remains elusive. Molecular simulation can complement experiments by modelling structures and their time evolution in atomistic detail. In this paper we report an exploration of the different binding modes of H-NS to a high affinity nucleotide sequence and an estimate of the associated rate constant. By means of molecular dynamics simulations, we identified three types of binding for H-NS to AT-rich DNA. To further sample the transitions between these binding modes, we performed Replica Exchange Transition Interface Sampling, providing predictions of the mechanism and rate constant of H-NS binding to DNA. H-NS interacts with the DNA through a conserved QGR motif, aided by a conserved arginine at position 93. The QGR motif interacts first with phosphate groups, followed by the formation of hydrogen bonds between acceptors in the DNA minor groove and the sidechains of either Q112 or R114. After R114 inserts into the minor groove, the rest of the QGR motif follows. Full insertion of the QGR motif in the minor groove is stable over several tens of nanoseconds, and involves hydrogen bonds between the bases and both backbone and sidechains of the QGR motif. The rate constant for the process of H-NS binding to AT-rich DNA resulting in full insertion of the QGR motif is in the order of 10(6) M-1s-1, which is rate limiting compared to the non-specific association of H-NS to the DNA backbone at a rate of 10(8) M-1s-1.


Assuntos
Adenina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Timina/metabolismo , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica
9.
Biophys J ; 110(11): 2328-2341, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276251

RESUMO

Using a combination of ultraviolet circular dichroism, temperature-jump transient-infrared spectroscopy, and molecular dynamics simulations, we investigate the effect of salt bridges between different types of charged amino-acid residue pairs on α-helix folding. We determine the stability and the folding and unfolding rates of 12 alanine-based α-helical peptides, each of which has a nearly identical composition containing three pairs of positively and negatively charged residues (either Glu(-)/Arg(+), Asp(-)/Arg(+), or Glu(-)/Lys(+)). Within each set of peptides, the distance and order of the oppositely charged residues in the peptide sequence differ, such that they have different capabilities of forming salt bridges. Our results indicate that stabilizing salt bridges (in which the interacting residues are spaced and ordered such that they favor helix formation) speed up α-helix formation by up to 50% and slow down the unfolding of the α-helix, whereas salt bridges with an unfavorable geometry have the opposite effect. Comparing the peptides with different types of charge pairs, we observe that salt bridges between side chains of Glu(-) and Arg(+) are most favorable for the speed of folding, probably because of the larger conformational space of the salt-bridging Glu(-)/Arg(+) rotamer pairs compared to Asp(-)/Arg(+) and Glu(-)/Lys(+). We speculate that the observed impact of salt bridges on the folding kinetics might explain why some proteins contain salt bridges that do not stabilize the final, folded conformation.


Assuntos
Arginina/química , Ácido Aspártico/química , Ácido Glutâmico/química , Lisina/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Análise dos Mínimos Quadrados , Simulação de Dinâmica Molecular , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Análise Espectral , Eletricidade Estática , Termodinâmica
10.
PLoS Comput Biol ; 11(10): e1004444, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26512985

RESUMO

How chaperones interact with protein chains to assist in their folding is a central open question in biology. Obtaining atomistic insight is challenging in particular, given the transient nature of the chaperone-substrate complexes and the large system sizes. Recent single-molecule experiments have shown that the chaperone Trigger Factor (TF) not only binds unfolded protein chains, but can also guide protein chains to their native state by interacting with partially folded structures. Here, we used all-atom MD simulations to provide atomistic insights into how Trigger Factor achieves this chaperone function. Our results indicate a crucial role for the tips of the finger-like appendages of TF in the early interactions with both unfolded chains and partially folded structures. Unfolded chains are kinetically trapped when bound to TF, which suppresses the formation of transient, non-native end-to-end contacts. Mechanical flexibility allows TF to hold partially folded structures with two tips (in a pinching configuration), and to stabilize them by wrapping around its appendages. This encapsulation mechanism is distinct from that of chaperones such as GroEL, and allows folded structures of diverse size and composition to be protected from aggregation and misfolding interactions. The results suggest that an ATP cycle is not required to enable both encapsulation and liberation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Modelos Químicos , Simulação de Dinâmica Molecular , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Especificidade por Substrato
11.
PLoS Comput Biol ; 10(10): e1003797, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25356903

RESUMO

The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Biologia Computacional/métodos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/fisiologia , Transdução de Sinais/fisiologia , Algoritmos , Simulação por Computador , Difusão , Modelos Moleculares , Termodinâmica
12.
PLoS Comput Biol ; 9(2): e1002913, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468603

RESUMO

The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Simulação de Dinâmica Molecular , Archaeoglobus fulgidus , Estrutura Terciária de Proteína , Desdobramento de Proteína , Transdução de Sinais , Termodinâmica
13.
Methods Mol Biol ; 2819: 585-609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028525

RESUMO

H-NS is a DNA organizing protein that occurs in Gram-negative bacteria. It can form long filaments between two DNA duplexes by first binding to a high-affinity AT-rich nucleotide sequence and extending from there. Using molecular dynamics simulations and steered molecular dynamics, we are able to determine the free energy of formation and dissociation of a protein-DNA complex comprising an H-NS DNA-binding domain and a specific nucleotide sequence. The molecular dynamics simulations allow detailed characterization of the interactions between the protein and a specific nucleotide sequence. To quantify the strength of the interaction, we employ an additional potential based on protein-DNA contacts to speed up dissociation of the protein-DNA complex. The work required for the dissociation results in an estimate of the free energy of dissociation/complex formation. Our protocol can provide quantitative prediction of protein-DNA complex stability, while also providing high-resolution insights into recognition mechanisms. In this chapter, we have used this approach to quantify the sequence specificity of H-NS DNA-binding domains to various nucleotide sequences, thus elucidating the mechanism with which H-NS can specifically bind to AT-rich DNA.


Assuntos
Proteínas de Ligação a DNA , DNA , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , DNA/metabolismo , DNA/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Sequência de Bases
14.
Biophys J ; 104(7): 1615-22, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23561538

RESUMO

The histone-like nucleoid structuring protein (H-NS) is a nucleoid-associated protein, which is involved in both gene regulation and DNA compaction. H-NS can bind to DNA in two different ways: in trans, by binding to two separate DNA duplexes, or in cis, by binding to different sites on the same duplex. Based on scanning force microscopy imaging and optical trap-driven unzipping assays, it has recently been suggested that DNA compaction may result from the antagonistic effects of H-NS binding to DNA in trans and cis configurations. To get more insight into the compaction mechanism, we constructed a coarse-grained model description of the compaction of bacterial DNA by H-NS. These simulations highlight the fact that DNA compaction indeed results from the subtle equilibrium between several competing factors, which include the deformation dynamics of the plasmid and the several binding modes of protein dimers to DNA, i.e., dangling configurations, cis- and trans-binding. In particular, the degree of compaction is extremely sensitive to the difference in binding energies of the cis and trans configurations. Our simulations also point out that the conformations of the DNA-protein complexes are significantly different in bulk and in planar conditions, suggesting that conformations observed on mica surfaces may differ significantly from those that prevail in living cells.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Termodinâmica
15.
Proc Natl Acad Sci U S A ; 107(6): 2397-402, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133754

RESUMO

Understanding the dynamics of large-scale conformational changes in proteins still poses a challenge for molecular simulations. We employ transition path sampling of explicit solvent molecular dynamics trajectories to obtain atomistic insight in the reaction network of the millisecond timescale partial unfolding transition in the photocycle of the bacterial sensor photoactive yellow protein. Likelihood maximization analysis predicts the best model for the reaction coordinates of each substep as well as tentative transition states, without further simulation. We find that the unfolding of the alpha-helical region 43-51 is followed by sequential solvent exposure of both Glu46 and the chromophore. Which of these two residues is exposed first is correlated with the presence of a salt bridge that is part of the N-terminal domain. Additional molecular dynamics simulations indicate that the exposure of the chromophore does not result in a productive pathway. We discuss several possibilities for experimental validation of these predictions. Our results open the way for studying millisecond conformational changes in other medium-sized (signaling) proteins.


Assuntos
Proteínas de Bactérias/química , Luz , Fotorreceptores Microbianos/química , Conformação Proteica/efeitos da radiação , Teorema de Bayes , Ácido Glutâmico/química , Halorhodospira halophila/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Dobramento de Proteína/efeitos da radiação , Estrutura Secundária de Proteína/efeitos da radiação , Estrutura Terciária de Proteína/efeitos da radiação , Soluções , Termodinâmica , Fatores de Tempo
16.
J Chem Theory Comput ; 19(3): 902-909, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36695645

RESUMO

All-atom simulations have become increasingly popular to study conformational and dynamical properties of nucleic acids as they are accurate and provide high spatial and time resolutions. This high resolution, however, comes at a heavy computational cost, and, within the time scales of simulations, nucleic acids weakly fluctuate around their ideal structure exploring a limited set of conformations. We introduce the RBB-NA algorithm (available as a package in the Open Source Library PLUMED), which is capable of controlling rigid base parameters in all-atom simulations of nucleic acids. With suitable biasing potentials, this algorithm can "force" a DNA or RNA molecule to assume specific values of the six rotational (tilt, roll, twist, buckle, propeller, opening) and/or the six translational parameters (shift, slide, rise, shear, stretch, stagger). The algorithm enables the use of advanced sampling techniques to probe the structure and dynamics of locally strongly deformed nucleic acids. We illustrate its performance showing some examples in which DNA is strongly twisted, bent, or locally buckled. In these examples, RBB-NA reproduces well the unconstrained simulations data and other known features of DNA mechanics, but it also allows one to explore the anharmonic behavior characterizing the mechanics of nucleic acids in the high deformation regime.


Assuntos
Simulação de Dinâmica Molecular , Ácidos Nucleicos , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , DNA/química , Viés
17.
Biophys J ; 103(1): 89-98, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22828335

RESUMO

The histone-like nucleoid structuring protein (H-NS) is a DNA-organizing protein in bacteria. It contains a DNA-binding domain and a dimerization domain, connected by a flexible linker region. Dimerization occurs through the formation of a helical bundle, including a coiled-coil interaction motif. Two conformations have been resolved, for different sequences of Escherichia coli H-NS, resulting in an antiparallel coiled-coil for the shorter wild-type sequence, and a parallel coiled-coil for the longer C21S mutant. Because H-NS functions as a thermo- and osmosensor, these conformations may both be functionally relevant. Molecular simulation can complement experiments by modeling the dynamical time evolution of biomolecular systems in atomistic detail. We performed a molecular-dynamics study of the H-NS dimerization domain, showing that the parallel complex is sensitive to changes in salt conditions: it is unstable in absence of NaCl, but stable at physiological salt concentrations. In contrast, the stability of the antiparallel complex is not salt-dependent. The stability of the parallel complex also appears to be affected by mutation of the critical but nonconserved cysteine residue at position 21, whereas the antiparallel complex is not. Together, our simulations suggest that osmoregulation could be mediated by changes in the ratio of parallel- and antiparallel-oriented H-NS dimers.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Subunidades Proteicas/química , Motivos de Aminoácidos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Salmonella typhimurium/química , Cloreto de Sódio
18.
Biophys J ; 103(6): 1296-304, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995502

RESUMO

We investigate the molecular mechanism of monomer addition to a growing amyloid fibril composed of the main amyloidogenic region from the insulin peptide hormone, the LVEALYL heptapeptide. Applying transition path sampling in combination with reaction coordinate analysis reveals that the transition from a docked peptide to a locked, fully incorporated peptide can occur in two ways. Both routes involve the formation of backbone hydrogen bonds between the three central amino acids of the attaching peptide and the fibril, as well as a reorientation of the central Glu side chain of the locking peptide toward the interface between two ß-sheets forming the fibril. The mechanisms differ in the sequence of events. We also conclude that proper docking is important for correct alignment of the peptide with the fibril, as alternative pathways result in misfolding.


Assuntos
Amiloide/química , Insulina/química , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Multimerização Proteica , Sequência de Aminoácidos , Estrutura Secundária de Proteína
19.
J Biol Chem ; 286(50): 43506-14, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22025617

RESUMO

Chemokines (chemotactic cytokines) can have direct antimicrobial activity, which is apparently related to the presence of a distinct positively charged patch on the surface. However, chemokines can retain antimicrobial activity upon linearization despite the loss of their positive patch, thus questioning the importance of this patch for activity. Thrombocidin-1 (TC-1) is a microbicidal protein isolated from human blood platelets. TC-1 only differs from the chemokine NAP-2/CXCL7 by a two-amino acid C-terminal deletion, but this truncation is crucial for antimicrobial activity. We assessed the structure-activity relationship for antimicrobial activity of TC-1. Reduction of the charge of the TC-1-positive patch by replacing lysine 17 with alanine reduced the activity against bacteria and almost abolished activity against the yeast Candida albicans. Conversely, augmentation of the positive patch by increasing charge density or size resulted in a 2-3-fold increased activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis but did not substantially affect activity against C. albicans. Reduction of TC-1 resulted in loss of the folded conformation, but this disruption of the positive patch did not affect antimicrobial activity. Using overlapping 15-mer synthetic peptides, we demonstrate peptides corresponding to the N-terminal part of TC-1 to have similar antimicrobial activity as intact TC-1. Although we demonstrate that the positive patch is essential for activity of folded TC-1, unfolded TC-1 retained antimicrobial activity despite the absence of a positive patch. This activity is probably exerted by a linear peptide stretch in the N-terminal part of the molecule. We conclude that intact TC-1 and unfolded TC-1 exert antimicrobial activity via distinct structural elements.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Peptídeos/genética , Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
20.
J Phys Chem B ; 126(48): 10034-10044, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36427204

RESUMO

Flexibility is essential for many proteins to function, but can be difficult to characterize. Experiments lack resolution in space and time, while the time scales involved are prohibitively long for straightforward molecular dynamics simulations. In this work, we present a multiple state transition path sampling simulation study of a protein that has been notoriously difficult to characterize in its active state. The GTPase enzyme KRas is a signal transduction protein in pathways for cell differentiation, growth, and division. When active, KRas tightly binds guanosine triphosphate (GTP) in a rigid state. The protein-GTP complex can also visit more flexible states, in which it is not active. KRas mutations can affect the conversion between these rigid and flexible states, thus prolonging the activation of signal transduction pathways, which may result in tumor formation. In this work, we apply path sampling simulations to investigate the dynamic behavior of KRas-4B (wild type, WT) and the oncogenic mutant Q61L (Q61L). Our results show that KRas visits several conformational states, which are the same for WT and Q61L. The multiple state transition path sampling (MSTPS) method samples transitions between the different states in a single calculation. Tracking which transitions occur shows large differences between WT and Q61L. The MSTPS results further reveal that for Q61L, a route to a more flexible state is inaccessible, thus shifting the equilibrium to more rigid states. The methodology presented here enables a detailed characterization of protein flexibility on time scales not accessible with brute-force molecular dynamics simulations.


Assuntos
Mutação , Guanosina Trifosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA