Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sensors (Basel) ; 23(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631810

RESUMO

Turbidity is an important water quality parameter, especially for drinking water. The ability to actively monitor the turbidity level of drinking water distribution systems is of critical importance to the safety and wellbeing of the public. Traditional turbidity monitoring methods involve the manual collection of water samples at set locations and times followed by laboratory analysis, which are labor intensive and time consuming. Fiber-optic measurement permits real-time, in situ turbidity monitoring. But the current technology is based on plastic fibers, which suffer from high optical attenuation and hence are unsuitable for large-scale remote monitoring. In this paper, we report the demonstration of a fiber-optic turbidity sensor based on multi-mode glass fibers. The system uses a single fiber to both deliver laser light into the water sample and collect the back-scattered light for detection. A balanced detection scheme is utilized to remove the common-mode noise to enhance the turbidity sensitivity. Highly linear turbidity responses are obtained and a turbidity resolution as low as 0.1 NTU is achieved. The test unit is also shown to have excellent reproducibility against repeated measurements and good stability against temperature changes. Turbidity measurement in real environmental matrices such as tap water and pond water is also reported with an assessment of the impact of flow rate. This work demonstrates the feasibility of future large-scale distributed fiber-optic turbidity monitoring networks.

2.
Water Sci Technol ; 76(9-10): 2434-2444, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29144301

RESUMO

The Houjing River has long been an environmental victim of economic development. Industries that have settled along the bank of this river may have largely contributed to severe organic wastes pollution. This study collected water and sediment samples at various points along the river and measured concentrations of 61 volatile organic compounds (VOCs) and 128 semi-volatile organic compounds (SVOCs) for a period of 16 months (Feb 2014-June 2015). Our analyses show that elevated levels of VOCs were observed near two industrial areas, Dashe and Renwu industrial parks. High SVOC concentrations were found in the vicinities of the Nanzih Export Processing Zone (NEPZ) and CingPu station, possibly due to considerable effluent discharges of adjacent industrial and residential areas. Comparing this study's findings with the standard values of different governmental agencies and studies similar to this one, the ecosystem of the Houjing River was seriously contaminated. This study could be used by the government as a basis for future and urgent pollution prevention actions aimed at protecting this ecosystem and reducing the negative impacts of these contaminants on the health and well-being of the local residents and the environment.


Assuntos
Rios/química , Poluentes Químicos da Água/química , Poluição da Água/análise , Ásia , Ecossistema , Monitoramento Ambiental , Compostos Orgânicos Voláteis/química
3.
Sci Total Environ ; 809: 152161, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34875329

RESUMO

Remote areas, where centralized water supply cannot reach, rely heavily on decentralized supply systems such as slow sand filters (SSFs). Groundwater used to be a reliable water source; yet, the advent of micropollutants (MPs) has raised concerns over its quality. In this study, an enhanced slow sand filtration utilizing graphene oxide (GO)-coated sand prepared via a simple thermal method was employed to remove two representative MPs, atrazine (ATZ) and atenolol (ATL), from real groundwater for drinking water treatment. The removal of ATZ and ATL was studied in a bench-scale enhanced SSF using GO-coated sand in comparison with the conventional plain sand. The results showed that the GO-coated sand performed better in the removal of ATZ, ATL, and total organic carbon (TOC), as well as turbidity reduction. Moreover, in order to study the role of the schmutzdecke in MPs' removal small lab-scale columns with and without schmutzdecke growth were set up. The results indicated the enhanced removal capacity of the coated sand toward ATZ, ATL, and TOC could mainly be attributed to the GO coating layer, not the schmutzdecke. Hence, if the coated sand is to be used in field SSFs for the removal of organic contaminants, the schmutzdecke growing phase might not be needed. A preliminary techno-economic analysis was performed to evaluate the practicability of enhanced SSF and GO was found to dominate the overall cost. For a community-level or a household-level SSF, the extra cost using GO-coated sand may be $0.34 and $3.25 per m3 of water if the GO price is $10 and $100 per kg, respectively.


Assuntos
Água Subterrânea , Purificação da Água , Filtração , Dióxido de Silício
4.
Chemosphere ; 307(Pt 4): 135989, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988768

RESUMO

Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.


Assuntos
Compostagem , Ácidos Ftálicos , Poluentes do Solo , Biodegradação Ambiental , Dibutilftalato , Ésteres , Plásticos , Solo , Poluentes do Solo/análise , Tecnologia
5.
J Hazard Mater ; 421: 126767, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396961

RESUMO

Dioxin-contaminated soil has attracted worldwide attention due to its potential negative impacts on human health and the ecosystem. Thus, technological development aiming at high treatment efficiency and low cost for dioxin-contaminated soil is largely needed. In this review, approximately 200 documents were involved to summarize up-to-date scientific achievements of soil washing technology for the remediation of dioxin-contaminated soil. The mechanisms, advantages, and limitations of physical separation techniques (e.g. mechanical stirring, mechanical shaking, ultrasonication, and froth flotation) and washing solutions (e.g. organic solvents, edible oils, and surfactants) used for chemical extraction were comprehensively reviewed. Froth flotation is very promising for field-scale soil washing, whereas organic solvents show high removal efficiencies (up to 99%) of dioxins from contaminated soil. Further, the combination of physical separation and chemical extraction can help enhance dioxin removal efficiency (from 1.5 to 2 times), reducing energy consumption and cost (about 2 times). Among available remediation technologies for dioxin-contaminated soil, soil washing is truly promising since it has shown high removal efficiency (66-99% different remediation scales) with reasonable cost (46 - 250 USD per metric ton). However, the washed solution and volatile organic compounds generated during the process remain a concern and should be addressed in future research.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Poluentes do Solo , Ecossistema , Humanos , Dibenzodioxinas Policloradas/análise , Solo , Poluentes do Solo/análise
6.
Chemosphere ; 300: 134514, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398076

RESUMO

Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.


Assuntos
Compostagem , Amônia , Nitrificação , Nitritos , Nitrogênio , Ciclo do Nitrogênio , Óxido Nitroso/análise , Solo/química
7.
Sci Total Environ ; 753: 142250, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207468

RESUMO

This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.


Assuntos
Compostagem , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo
8.
Chemosphere ; 265: 129064, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248736

RESUMO

The overall dioctyl terephthalate (DOTP) degradation efficiency during food waste composting was 98%. The thermophilic phases contributed to 76% of the overall degradation efficiency, followed by the maturation phase (22%), then the mesophilic phase (0.7%). The thermophilic phase had the highest specific degradation rate of 0.149 d-1. The progression of the bacterial community during the composting process was investigated to understand DOTP biodegradation. The results showed that the bacterial richness and the alpha diversity of the DOTP composting were similar to a typical composting process, indicating that the high concentration of DOTP did not hinder the thriving and evolution of the bacterial community. Additionally, Firmicutes was the most dominant at the phylum level, followed by Proteobacteria and Bacteroidetes. Bacilli was the most dominant class (70%) in the mesophilic phase, with the abundance decreasing thereafter in the thermophilic and maturation phase. Moreover, Lactobacillus sp. was the dominant species at the beginning of the experiment, which was probably responsible for DOTP biodegradation. The high removal efficiency observed in the maturation phase indicates that degradation occurs in all the composting phases, and that compost can be used to enhance natural attenuation. These findings provide a better understanding of the bacterial communities during biodegradation of DOTP and plasticizers via food waste composting and should facilitate the development of appropriate green bioremediation technologies.


Assuntos
Compostagem , Eliminação de Resíduos , Alimentos , Ácidos Ftálicos , Solo , Microbiologia do Solo
9.
Water Res ; 175: 115679, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172054

RESUMO

The removal of phosphate (nutrient) and E. coli (pathogen) from secondary effluent is of great importance to control the water quality of the receiving water bodies. In this study, magnetic porous NiLa-layered double oxides (NiLa-LDOs/Fe3O4) were synthesized using a simple co-precipitation method. NiLa-LDOs/Fe3O4 exhibited a high phosphate adsorption capacity of 203.10 mg g-1 in batch adsorption experiments, which can mostly be maintained within the pH range (5.5-8.5) and ionic strength range (5-20 mM) of secondary effluent, and in the presence of commonly co-existing species (anions and organics). NiLa-LDOs/Fe3O4 were further evaluated in real secondary effluent and the homogenous surface diffusion model (HSDM) was used to predict the performance in field applications. Under typical conditions, NiLa-LDOs/Fe3O4 can last for ∼1845-2448 bed volumes (BVs) before the phosphate concentration in the effluent exceeds the monthly average limit of 1 mg L-1 P. Good regeneration capacities were also demonstrated in cyclic adsorption-desorption runs in both synthetic solution and secondary effluent. In addition, the presence of Ni and La species greatly enhanced the antibacterial performance of the NiLa-LDOs/Fe3O4 toward E. coli. Results obtained from this study indicate porous NiLa-LDOs/Fe3O4 can be a promising multifunctional material for the treatment of secondary effluent.


Assuntos
Fosfatos , Purificação da Água , Adsorção , Antibacterianos , Escherichia coli , Fenômenos Magnéticos , Óxidos , Porosidade
10.
Environ Sci Pollut Res Int ; 27(28): 34770-34780, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32016863

RESUMO

One of the most industrially affected rivers in Taiwan, the Houjing River, was studied in this research. The water and sediment samples were collected at five locations to measure the concentration of eight metals (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn). In order to assess the heavy metal contamination and its adverse biological effect, the heavy metal pollution index (HPI), the degree of contamination index (DC), the contamination factor (CF), the index of geo-accumulation (Igeo), and hazard quotients (HQs) were employed. The results showed that the Houjing River's water and sediment were contaminated with heavy metals. The annually averaged values of HPI (128.3) and DC (21.3) indicate that the water is unsafe for potable use and the sediment contamination level is at considerable degree of contamination. CF and Igeo calculation show that Zn, Cu, and Cd are the three main metals contributing to heavy metal contamination in sediment. Evaluation of adverse biological effects suggests that Zn, Cu, and Ni are the major metals that cause adverse effects on organisms. This study provides an overview of the synergistic heavy metal contamination degree of the Houjing River and its adverse biological effects, which should be a reliable reference for future contamination control and management plans.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Sedimentos Geológicos , Medição de Risco , Rios , Taiwan
11.
Chemosphere ; 224: 852-861, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30852465

RESUMO

The degradation of surface water quality in the US is mostly contributed by nonpoint-source pollution, in which stormwater runoff plays a major role. Stormwater runoff pollution is difficult to control due to its diffuse and stochastic loading. In this study, multifunctional AlMg/GO engineered sand synthesized via a simple method was used to address four major categories of runoff contaminants, namely nutrient (phosphate), metal (zinc), organic contaminant (caffeine), and pathogen (E. coli), simultaneously. For chemical contaminants (phosphate, zinc, and caffeine), Freundlich and Thomas models can successfully describe the batch isotherms and breakthrough curves of column flow-through experiments, respectively. Better E. coli retention capacity and antibacterial activity of the engineered sand than that of the raw sand was demonstrated in E. coli retention and revitalization experiments. The engineered sand also showed good performance in actual surface runoff. Based on the results of the column flow-through experiments and the literature-reported typical field conditions and design criteria (e.g. 50 m3 engineered sand for 5000 m2 catchment; dissolved concentrations in the runoff: phosphate 0.2 mg/L, zinc 0.3 mg/L, and caffeine 0.0002 mg/L), a preliminary operational lifetime estimation was conducted, which indicated that the engineered sand can maintain its effectiveness for 90% removal of the dissolved phosphate, zinc, and caffeine from stormwater runoff for 81, 15, and >100 years, respectively. The engineered multifunctional sand proved to be a promising solution to future stormwater runoff management.


Assuntos
Cafeína/análise , Organofosfatos/análise , Chuva/química , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Zinco/análise , Alumínio/química , Escherichia coli , Magnésio/química , Qualidade da Água
12.
RSC Adv ; 9(44): 25303-25308, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35530095

RESUMO

Ruthenium (Ru) is a rare-earth metal, which is employed widely in metal-processing industries. This study recovered Ru from the wastewater of an IC foundry by cementation using metallic aluminum (Al) powder as the sacrificial agent. Ru ions were efficiently reduced to the metal and coagulated with the derived aluminum hydroxide flocs. Experimental parameters included the particle size of Al, molar ratio of Al to Ru, initial Ru concentration and operation temperature. The recovery rate reached 99% under these conditions: particle size Al powder = 88-128 µm, Al/Ru molar ratio = 2.0, initial Ru = 200 mg L-1, temperature = 338.16 K, reaction time = 120 min, stirring speed = 150 rpm. The cemented Ru over Al powder was spherical with a rough surface. Kinetic modelling suggested that the diffusion of Ru through the ash layer of Al powder controlled the reaction rate with an activation energy of 40.75 kJ mol-1. A brief cost analysis demonstrated that the cementation of Ru yielded a profit of $0.180 per 0.1 m3-wastewater.

13.
Sci Total Environ ; 647: 619-626, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30092517

RESUMO

Exposure to phthalate esters (PAEs) poses health risks to humans. Much research has been performed evaluating PAE levels in foodstuffs, river sediment and drinking water, but little attention has been paid to their presence in urban outdoor environments where human activities are highly intense. Here we evaluated PAE presence and distribution in street dust in Kaohsiung, the most industrialized city in Taiwan. Our results showed that PAEs were ubiquitous in fifty-two street-dust samples (levels of total PAEs 5.4-989.2 mg kg-1). Di-(2-ethylhexyl) phthalate was the most abundant congener observed and made up 85.0%, 79.7%, and 97.2% of the total PAEs found in industrial, residential and commercial areas, respectively. PAE levels in street dust in commercial areas (night markets) were significantly higher, suggesting a higher risk of contamination on people present in these areas (H value > χU2). In residential and commercial areas, the higher the intensity of human activity, the higher the PAE content observed. PAE content decreased progressively from the center to the outskirts of the Houjing night market, suggesting that the increased human and consumer activities inside this commercial hotspot were the main PAE source in street dust. Children had higher estimated daily intakes (DIs) than adults and dermal absorption contributed more to these levels than oral ingestion. Although all calculated DIs were below referenced danger thresholds, street dust PAEs in the area should remain an environmental concern especially since night markets play an important role in Taiwanese/Asian culture and economy. Contrary to other studies, PAEs in this study were found less related to industrial manufacturing activities but highly linked to commercial activities. These findings are relevant for future pollution prevention efforts dedicated to mitigating public exposure to PAEs. MAIN FINDINGS: PAE levels in street dust are related to commercial activities. Night markets, an important commercial activity in Taiwan, were found to contribute considerably to PAE contamination in street dust.


Assuntos
Poeira/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Ácidos Ftálicos/análise , China , Cidades , Ésteres , Atividades Humanas , Humanos , Taiwan
14.
Sci Total Environ ; 660: 595-602, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30641388

RESUMO

This study investigated bacterial communities during aerobic food waste co-composting degradation of highly PCDD/F-contaminated field soil. The total initial toxic equivalent quantity (TEQ) of the soil was 16,004 ng-TEQ kg-1 dry weight. After 42-day composting and bioactivity-enhanced monitored natural attenuation (MNA), the final compost product's TEQ reduced to 1916 ng-TEQ kg-1 dry weight (approximately 75% degradation) with a degradation rate of 136.33 ng-TEQ kg-1 day-1. Variations in bacterial communities and PCDD/F degraders were identified by next-generation sequencing (NGS). Thermophilic conditions of the co-composting process resulted in fewer observed bacteria and PCDD/F concentrations. Numerous organic compound degraders were identified by NGS, supporting the conclusion that PCDD/Fs were degraded during food waste co-composting. Bacterial communities of the composting process were defined by four phyla (Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes). At the genus level, Bacillus (Firmicutes) emerged as the most dominant phylotype. Further studies on specific roles of these bacterial strains are needed, especially for the thermophiles which contributed to the high degradation rate of the co-co-composting treatment's first 14 days.


Assuntos
Bactérias/metabolismo , Benzofuranos/metabolismo , Compostagem , Recuperação e Remediação Ambiental/métodos , Dibenzodioxinas Policloradas/metabolismo , Poluentes do Solo/metabolismo , Aerobiose , Biodegradação Ambiental , Microbiota , Microbiologia do Solo , Taiwan
15.
Environ Sci Pollut Res Int ; 24(23): 19422-19434, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28677040

RESUMO

In this study, tissues of five fish species prevalent in the Houjing River were analyzed for heavy metal concentrations. Results show concentrations of such metals to be much higher than internationally recommended standard limits (as determined by the WHO and FAO) and other similar studies. Heavy metal contamination of fish in the Houjing River is hence significant. High hazard and carcinogenic risk related to the Houjing River's fish was proven based on target hazard quotient (THQ) and target cancer risk (TR) estimations. In fact, four of the five species studied present THQ levels higher than 1, and seven TRs of zinc (Zn) and arsenic (As) are higher than 10-4. Despite lower estimated daily intake (EDI) of fish in the area (per recommended daily allowance guidelines), possible heavy metal bioaccumulations in fish stock pose a high health risk for human consumption. From our analyses, the highest bioaccumulation factor (BAF) estimated above 1000 was of Zn. Among the fish species studied, Oreochromis niloticus possesses the ability to accumulate copper (Cu) and Zn dramatically. Pearson's correlation matrix showed a positive correlation between Cu and As, attributed to multiple industrial activities along the river. Hierarchical cluster analysis of results based on sampling stations exhibits three clusters and may be linked to the type of industrial activities specific to that area. More intensive study is needed in order to further determine the toxic metals in fish. Reporting of contaminant levels must be compared with optimal health criteria guidelines. Our study, while showing the severity of heavy metal contamination in fish stock, calls for urgent, sustained, and targeted actions by both governmental authorities and the local scientific community-to help prevent and mitigate the situation and ensure the physical well-being of local inhabitants.


Assuntos
Monitoramento Ambiental , Peixes , Contaminação de Alimentos/análise , Metais Pesados/análise , Metais Pesados/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Humanos , Metais Pesados/toxicidade , Medição de Risco , Rios/química , Taiwan , Poluentes Químicos da Água/toxicidade
16.
Environ Sci Pollut Res Int ; 24(23): 18936-18945, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656572

RESUMO

The remediation of dioxin-contaminated soil of a specific coastal area previously employed for the manufacture of pentachlorophenol (PCP) in southern Taiwan's Tainan City has attracted much attention of researchers there. This work addresses the possibility of providing an effective and environmentally friendly option for removing PCDD/Fs from soil in that field. Soil screening/sieving was first conducted to assess particle distribution. Fine sand was observed to be the major component of the soil, accounting for more than 60% of the total mass. A combination of ultrasonification and mechanical double-blade agitation was used to facilitate the washing of the soil using the biosurfactant anaerobic compost tea. More than 85 and 95% of total removal efficiencies were achieved for moderately and highly contaminated soils after 6 and 10 washing cycles, respectively, under ambient temperature, a soil/liquid ratio 1:2.5, 700 rpm, and over a relatively short duration. These results were achieved through the collision and penetration effects of this combined treatment as well as PCDD/F partitioning between the particles and anaerobic compost tea. This study represents the first to report the use of anaerobic compost tea solvent to wash soil highly contaminated by dioxin. It was concluded that anaerobic compost tea, rich in non-toxic bio-surfactants (e.g., alcohols, humic acids), can be used to improve bioavailability and bioactivity of the soil making bio-attenuation and full remediation more efficient.


Assuntos
Benzofuranos/química , Compostagem , Recuperação e Remediação Ambiental/métodos , Dibenzodioxinas Policloradas/química , Poluentes do Solo/química , Solo/química , Pentaclorofenol/química , Taiwan , Chá
17.
Environ Sci Pollut Res Int ; 23(21): 21712-21725, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522206

RESUMO

Taiwan has a large number of poorly managed contaminated sites in need of remediation. This study proposes a framework, a set of standards, and a spreadsheet-based evaluation tool for implementing green and sustainable principles into remediation projects and evaluating the projects from this perspective. We performed a case study to understand how the framework would be applied. For the case study, we used a spreadsheet-based evaluation tool (SEFA) and performed field scale cultivation tests on a site contaminated with total petroleum hydrocarbons (TPHs). The site was divided into two lots: one treated by chemical oxidation and the other by bioremediation. We evaluated five core elements of green and sustainable remediation (GSR): energy, air, water resources, materials and wastes, and land and ecosystem. The proposed evaluation tool and field scale cultivation test were found to efficiently assess the effectiveness of the two remediation alternatives. The framework and related tools proposed herein can potentially be used to support decisions about the remediation of contaminated sites taking into account engineering management, cost effectiveness, and social reconciliation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Química Verde/métodos , Hidrocarbonetos/análise , Petróleo/análise , Ecossistema , Modelos Teóricos , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA