Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 18(17): e202300404, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37440587

RESUMO

Highly positively charged poly(vinyl benzyl trimethylammonium chloride) (PVBMA) was successfully synthesized with approximately 82% of yield. The PVBMA was characterized by the molecular weight (Mw ) of 343.45 g mol-1 and the molecular weight distribution, (D) of 2.4 by 1 H NMR and SEC measurements. The PVBMA was applied as an effective agent for α-Al2 O3 surface modification in the adsorptive removal of the azo dye acid orange G (AOG). The AOG removal performance was significantly enhanced at all pH compared to without surface modification. The experimental parameters were optimal at pH 8, free ionic strength, 15 min of adsorption time, and 5 mg mL-1 α-Al2 O3 adsorbents. The AOG adsorption which was mainly controlled by the PVBMA-AOG electrostatic attractions was better applicable to the Langmuir isotherm and the pseudo-second kinetic model. The PVBMA-modified α-Al2 O3 demonstrates a high-performance and highly reusable adsorbent with great AOG performances of approximately 90.1% after 6 reused cycles.

2.
Chemosphere ; 307(Pt 2): 135856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944682

RESUMO

The present study aims to investigate adsorption characteristics and mechanisms of Moringa (MO) seeds protein on nanosilica rice husk and their applications in removal of pharmaceutical residues including the fluoroquinolone antibiotic levofloxacin (LFX) and the nonsteroidal anti-inflammatory drug diclofenac (DCF) in aquatic environment. Molecular weight of MO protein was determined by gel-permeation chromatography (GPC) method while its amino acids were quantified by high performance liquid chromatography (HPLC). The number-(Mn) and weight-average molecular weights (Mw) of MO protein were 1.53 × 104 and 1.61 × 104 g/mol, respectively. Different effective conditions on adsorption protein on nanosilica including contact time, pH, adsorbent dosage, and ionic strength were systematically optimized and found to be 180 min, 10, 10 mg/mL and 1 mM KCl, respectively. The surface charge change by zeta potential, surface modification by Fourier-transform infrared spectroscopy (FT-IR) and adsorption isotherms demonstrated that protein adsorption on nanosilica was governed by both electrostatic and non-electrostatic interactions. Application of protein functionalized nanosilica (ProFNS) in LFX and DCF removal were also thoroughly studied. The selected conditions for LFX and DCF removal using ProFNS were 1 mM KCl for both LFX and DCF; pH 8 and pH 6; contact time 90 and 120 min, and adsorption dosage 10 and 5 mg/ml for LFX and DCF, respectively. Adsorption isotherms of protein on nanosilica as well as LFX and DCF onto ProFNS at different ionic strengths were reasonably fitted by the two-step model while a pseudo-second-order model could fit adsorption kinetic well. The removal of LFX and DCF using ProFNS significantly increased from 51.51% to 87.35%, and 7.97%-50.02%, respectively. High adsorption capacities of 75.75 mg/g for LFX and 59.52 mg/g for DCF, indicate that ProFNS is a great performance for pharmaceutical residues removal in water environment.


Assuntos
Moringa , Oryza , Poluentes Químicos da Água , Adsorção , Aminoácidos , Antibacterianos , Anti-Inflamatórios , Diclofenaco/química , Concentração de Íons de Hidrogênio , Cinética , Levofloxacino , Preparações Farmacêuticas , Sementes , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/química
3.
J Am Chem Soc ; 132(44): 15589-602, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20961107

RESUMO

The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of Si(n)M(+) (n = 4-11 for M = V, and n = 6-11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding Si(n)M(+)·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si(9)Cu(+), Si(11)Cu(+), and Si(10)V(+), the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metal's 3d orbitals in the binding of the dopant atoms.

4.
J Phys Chem A ; 114(28): 7609-15, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20578767

RESUMO

The geometrical and electronic structures of the Si(8)(2-) dianion and isovalent silicon clusters doped by main second-row elements including Li@Si(8)(-), Be@Si(8), B@Si(8)(+), C@Si(8)(2+), N@Si(8)(3+), and O@Si(8)(4+), are investigated using quantum chemical methods. The analyses of phenomenological shell model (PSM) combined with partial electron localizability indicators (pELI-D) rationalize the existence of cubic silicon clusters. A cubic cluster can be formed, in the cases of Be@Si(8), B@Si(8)(+), and C@Si(8)(2+), when three conditions are satisfied, namely, a full occupancy of electronic shells (34 electrons), a presence of positive charge at the center, and a type of spherical aromaticity. A chemical bonding picture for the cubic cage of the doped silicon clusters is illustrated. Each Si atom has four lobes of sp(3) hybridization in which three lobes make three covalent sigma bonds with other Si atoms, and the fourth lobe makes a chemical bond with the dopant. The eight delocalized electrons distributed on the fourth lobes describing the bonding between dopant and Si cage follow the Hirsch rule. We demonstrate that a way of applying electron counting rule is to take into account delocalized electrons on the shell orbitals with N > 1 (2S and 2P shell orbitals).

5.
Polymers (Basel) ; 12(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906267

RESUMO

The present study aims to investigate adsorptive removal of molecular ciprofloxacin using protein-modified nanosilica (ProMNS). Protein was successfully extracted from Moringa seeds while nanosilica was synthesized from rice husk. Fourier-transform infrared (FTIR), ultraviolet visible (UV-Vis) and high-performance liquid chromatography (HPLC) were used to evaluate the characterization of protein. Adsorption of protein onto nanosilica at different pH and ionic strength was thoroughly studied to modify nanosilica surface. The removal efficiency of antibiotic ciprofloxacin (CFX) increased from 56.84% to 89.86% after surface modification with protein. Effective conditions for CFX removal using ProMNS were systematically optimized and found to be pH 7.0, adsorption time 90 min, adsorbent dosage 10 mg/mL, and ionic strength 1 mM KCl. A two-step model was successfully used to fit the adsorption isotherms of CFX onto ProMNS at different ionic strength while a pseudo-second-order model could fit adsorption kinetic of CFX onto ProMNS very well. Maximum adsorption capacity was very high that reached to 85 mg/g. Adsorption of CFX onto ProMNS decreased with increasing KCl concentration, suggesting that adsorption of CFX onto ProMNS is mainly controlled by electrostatic attraction between positively charged ProMNS surface and anionic species of CFX. Adsorption mechanisms of CFX onto ProMNS were discussed in detail based on adsorption isotherms, the change in surface charge by zeta potentail and the change in functional groups by FT-IR. The removal of CFX after three regenerations was greater than 73% while CFX removal from an actual hospital wastewater using ProMNS reached to 70%. Our results suggest that ProMNS is a new and eco-friendly adsorbent to remove antibiotics from aqueous solutions.

6.
J Phys Chem A ; 112(41): 10386-98, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18816037

RESUMO

Thermochemical parameters of carbonic acid and the stationary points on the neutral hydration pathways of carbon dioxide, CO 2 + nH 2O --> H 2CO 3 + ( n - 1)H 2O, with n = 1, 2, 3, and 4, were calculated using geometries optimized at the MP2/aug-cc-pVTZ level. Coupled-cluster theory (CCSD(T)) energies were extrapolated to the complete basis set limit in most cases and then used to evaluate heats of formation. A high energy barrier of approximately 50 kcal/mol was predicted for the addition of one water molecule to CO 2 ( n = 1). This barrier is lowered in cyclic H-bonded systems of CO 2 with water dimer and water trimer in which preassociation complexes are formed with binding energies of approximately 7 and 15 kcal/mol, respectively. For n = 2, a trimeric six-member cyclic transition state has an energy barrier of approximately 33 (gas phase) and a free energy barrier of approximately 31 (in a continuum solvent model of water at 298 K) kcal/mol, relative to the precomplex. For n = 3, two reactive pathways are possible with the first having all three water molecules involved in hydrogen transfer via an eight-member cycle, and in the second, the third water molecule is not directly involved in the hydrogen transfer but solvates the n = 2 transition state. In the gas phase, the two transition states have comparable energies of approximately 15 kcal/mol relative to separated reactants. The first path is favored over in aqueous solution by approximately 5 kcal/mol in free energy due to the formation of a structure resembling a (HCO 3 (-)/H 3OH 2O (+)) ion pair. Bulk solvation reduces the free energy barrier of the first path by approximately 10 kcal/mol for a free energy barrier of approximately 22 kcal/mol for the (CO 2 + 3H 2O) aq reaction. For n = 4, the transition state, in which a three-water chain takes part in the hydrogen transfer while the fourth water microsolvates the cluster, is energetically more favored than transition states incorporating two or four active water molecules. An energy barrier of approximately 20 (gas phase) and a free energy barrier of approximately 19 (in water) kcal/mol were derived for the CO 2 + 4H 2O reaction, and again formation of an ion pair is important. The calculated results confirm the crucial role of direct participation of three water molecules ( n = 3) in the eight-member cyclic TS for the CO 2 hydration reaction. Carbonic acid and its water complexes are consistently higher in energy (by approximately 6-7 kcal/mol) than the corresponding CO 2 complexes and can undergo more facile water-assisted dehydration processes.


Assuntos
Dióxido de Carbono/química , Termodinâmica , Água/química , Ácido Carbônico/síntese química , Ácido Carbônico/química , Simulação por Computador , Modelos Químicos , Teoria Quântica , Solventes/química
8.
J Phys Chem A ; 112(6): 1298-312, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18205340

RESUMO

The thermal instability of alpha-fluoroalcohols is generally attributed to a unimolecular 1,2-elimination of HF, but the barrier to intramolecular HF elimination from CF3OH is predicted to be 45.1 +/- 2 kcal/mol. The thermochemical parameters of trifluoromethanol were calculated using coupled-cluster theory (CCSD(T)) extrapolated to the complete basis set limit. High barriers of 42.9, 43.1, and 45.0 kcal/mol were predicted for the unimolecular decompositions of CH2FOH, CHF2OH, and CF3OH, respectively. These barriers are lowered substantially if cyclic H-bonded dimers of CF3OH with complexation energies of approximately 5 kcal/mol are involved. A six-membered ring dimer has an energy barrier of 28.7 kcal/mol and an eight-membered dimer has an energy barrier of 32.9 kcal/mol. Complexes of CF3OH with HF lead to strong H-bonded dimers, trimers and tetramers with complexation energies of approximately 6, 11, and 16 kcal/mol, respectively. The dimer, CH3OH:HF, and the trimers, CF3OH:2HF and (CH3OH)2:HF, have decomposition energy barriers of 26.7, 20.3, and 22.8 kcal/mol, respectively. The tetramer (CH3OH:HF)2 gives rise to elimination of two HF molecules with a barrier of 32.5 kcal/mol. Either CF3OH or HF can act as catalysts for HF-elimination via an H-transfer relay. Because HF is one of the decomposition products, the decomposition reactions become autocatalytic. If the energies due to complexation for the CF3OH-HF adducts are not dissipated, the effective barriers to HF elimination are lowered from approximately 20 to approximately 9 kcal/mol, which reconciles the computational results with the experimentally observed stabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA