Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Hepatol ; 74(1): 48-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663496

RESUMO

BACKGROUND & AIMS: In autoimmune hepatitis (AIH), the imbalance between regulatory T cells (Tregs) and T-helper type 17 (Th17) cells has been linked to low levels of CD39, an ectoenzyme that hydrolyses ATP, ultimately generating immunosuppressive adenosine. Upregulation of CD39 results from activation of aryl hydrocarbon receptor (AHR), which mediates toxin responses to modulate T-cell immunity. In this study, we investigated whether altered AHR signalling underlies defective CD39 expression and function in AIH Tregs and Th17 cells, therefore contributing to regulatory/effector cell imbalance. METHODS: Tregs and Th17 cells, obtained from the peripheral blood of 49 patients with AIH and 21 healthy individuals (HI), were tested for response to endogenous and exogenous AHR ligands. RESULTS: When compared to those of HI, AIH-derived Tregs and Th17 cells displayed impaired responses to AHR activation, reflected by impaired upregulation of CD39, delayed increase in ectoenzymatic activity, and defective Treg suppressive function. These impairments resulted, at least in part, from heightened levels of AHRR and Erα in Tregs and high HIF-1α in Th17 cells, and were reverted upon molecular blockade. Importantly, in AIH-derived Tregs, the binding affinity of AHR was higher for Erα than ARNT. CONCLUSIONS: In AIH, high levels of AHRR and HIF-1α inhibit AHR signalling in Tregs and Th17 cells. AHR non-canonical binding to Erα further amplifies the lack of effective CD39 upregulation. Blockade of these inhibitory and/or non-canonical activation pathways represents a potential therapeutic approach to restore CD39 and immunohomeostasis in AIH. LAY SUMMARY: In patients with autoimmune hepatitis, the imbalance between regulatory T cells and T helper type-17 cells is linked to dysfunction of the aryl hydrocarbon receptor pathway, resulting from aberrant inhibition or non-canonical activation. These alterations impair Treg- and Th17 cell-induced upregulation of CD39, an ectoenzyme key to immunoregulation. Blockade of excessive inhibition or non-canonical activation of the aryl hydrocarbon receptor pathway might represent a novel therapeutic strategy to control inflammation while restoring immune balance in autoimmune hepatitis.


Assuntos
Apirase/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hepatite Autoimune , Fígado , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/metabolismo , Células Cultivadas , Descoberta de Drogas , Hepatite Autoimune/sangue , Hepatite Autoimune/imunologia , Hepatite Autoimune/terapia , Humanos , Imunidade Celular/imunologia , Imunomodulação , Ligantes , Fígado/imunologia , Fígado/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Regulação para Cima
2.
Int J Mol Sci ; 20(3)2019 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-30691212

RESUMO

Exact causes for autoimmune diseases remain unclear and no cures are available. Breakdown of immunotolerance could set the stage for unfettered immune responses that target self-antigens. Impaired regulatory immune mechanisms could have permissive roles in autoreactivity. Abnormal regulatory immune cell function, therefore, might be a major determinant of the pathogenesis of autoimmune disease. All current treatments are associated with some level of clinical toxicity. Treatment to specifically target dysregulated immunity in these diseases would be a great advance. Extracellular adenosine is a signaling mediator that suppresses inflammation through activation of P1 receptors, most active under pathological conditions. Mounting evidence has linked alterations in the generation of adenosine from extracellular nucleotides by ectonucleotidases, and associated perturbations in purinergic signaling, to the immunological disruption and loss of immunotolerance in autoimmunity. Targeted modulation of the purinergic signaling by either targeting ectonucleotidases or modulating P1 purinergic receptors could therefore restore the balance between autoreactive immune responses; and thereby allow reestablishment of immunotolerance. We review the roles of CD39 and CD73 ectoenzymes in inflammatory states and with the dysregulation of P1 receptor signaling in systemic and organ-specific autoimmunity. Correction of such perturbations could be exploited in potential therapeutic applications.


Assuntos
Antígenos de Neoplasias/metabolismo , Apirase/metabolismo , Doenças Autoimunes/metabolismo , Receptores Purinérgicos P1/metabolismo , Tetraspaninas/metabolismo , Adenosina/metabolismo , Doenças Autoimunes/tratamento farmacológico , Humanos , Especificidade de Órgãos , Transdução de Sinais
4.
Eur J Immunol ; 42(12): 3334-45, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22996386

RESUMO

Extracellular ATP, released upon microbial infection, cell damage, or inflammation, acts as an alert signal toward immune cells by activating P2 receptors. The nucleotide causes microvesicle (MV) shedding from immune and nonimmune cells. Here, we show that IL-18 associates with MVs shed by human ex vivo macrophages upon P2X receptor stimulation. MV shedding was potently induced by ATP and by the P2X7 agonist 3'-benzoylbenzoyl adenosine 5'-triphosphate, while it was greatly reduced by P2X irreversible inhibitor-oxidized ATP and by the specific P2X7 inhibitors KN-62, A-740003, and A-438079. Peculiarly, the P2X7 subtype was highly present in the MVs, while on the contrary the P2X3 and P2X4 subtypes were almost absent. The Ca(2+) ionophore A23187 mimicked the effect of 3'-benzoylbenzoyl adenosine 5'-triphosphate suggesting that an intracellular Ca(2+) increase was sufficient to evoke MV shedding. Caspase inhibitors Ac-YVAD-CMK or Z-YVAD-CMK did not block the cleavage of MV-associated pro-IL-18. Pro-IL-18 formation in macrophages did not require pretreatment of cells with LPS, as the procytokine was already present in unprimed macrophages and did not decrease by incubating cells with the LPS-binding antibiotic polymyxin B nor with the TLR-4 intracellular inhibitor CLI-095. These data reveal a nucleotide-based mechanism responsible for the shedding of MV to which IL-18 is associated.


Assuntos
Micropartículas Derivadas de Células/imunologia , Interleucina-18/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Precursores de Proteínas/imunologia , Receptores Purinérgicos P2X4/imunologia , Receptores Purinérgicos P2X7/imunologia , Receptor 4 Toll-Like/imunologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Acetamidas/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Antibacterianos/farmacologia , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Micropartículas Derivadas de Células/metabolismo , Humanos , Interleucina-18/metabolismo , Macrófagos/metabolismo , Polimixina B/farmacologia , Precursores de Proteínas/metabolismo , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Sulfonamidas/farmacologia , Tetrazóis/farmacologia , Receptor 4 Toll-Like/metabolismo
5.
STAR Protoc ; 3(1): 101156, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141569

RESUMO

Here we present an optimized protocol for transcriptome profiling of COVID-19 patient samples, including peripheral blood mononuclear cells (PBMCs) and formalin-fixed paraffin-embedded tissue samples obtained from the lung, liver, heart, kidney, and spleen, with the matched controls. We describe RNA extraction and subsequent transcriptome analysis using NanoString technology of the patient samples. The protocol provides information about sample preparation, RNA extraction, and NanoString profiling and analysis. It can be also applied to differentiated Th17 and Treg subsets or formalin-fixed colon tissue samples. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021).


Assuntos
COVID-19/diagnóstico , Formaldeído/química , Leucócitos Mononucleares/metabolismo , RNA Viral/genética , SARS-CoV-2/genética , Fixação de Tecidos/métodos , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , COVID-19/genética , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Adulto Jovem
6.
Commun Biol ; 5(1): 994, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131123

RESUMO

Unconjugated bilirubin (UCB) confers Th17-cells immunosuppressive features by activating aryl-hydrocarbon-receptor, a modulator of toxin and adaptive immune responses. In Crohn's disease, Th17-cells fail to acquire regulatory properties in response to UCB, remaining at an inflammatory/pathogenic state. Here we show that UCB modulates Th17-cell metabolism by limiting glycolysis and through downregulation of glycolysis-related genes, namely phosphoglycerate-kinase-1 (PGK1) and aldolase-A (ALDOA). Th17-cells of Crohn's disease patients display heightened PGK1 and ALDOA and defective response to UCB. Silencing of PGK1 or ALDOA restores Th17-cell response to UCB, as reflected by increase in immunoregulatory markers like FOXP3, IL-10 and CD39. In vivo, PGK1 and ALDOA silencing enhances UCB salutary effects in trinitro-benzene-sulfonic-acid-induced colitis in NOD/scid/gamma humanized mice where control over disease activity and enhanced immunoregulatory phenotypes are achieved. PGK1 and/or ALDOA blockade might have therapeutic effects in Crohn's disease by favoring acquisition of regulatory properties by Th17-cells along with control over their pathogenic potential.


Assuntos
Doença de Crohn , Células Th17 , Animais , Benzeno/metabolismo , Bilirrubina , Doença de Crohn/genética , Fatores de Transcrição Forkhead/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Humanos , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Fosfoglicerato Quinase/antagonistas & inibidores
7.
Front Immunol ; 12: 746436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650567

RESUMO

Autoimmune hepatitis (AIH) is a chronic inflammatory disorder characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological features of interface hepatitis. AIH therapeutic management still relies on the administration of corticosteroids, azathioprine and other immunosuppressants like calcineurin inhibitors and mycophenolate mofetil. Withdrawal of immunosuppression often results in disease relapse, and, in some cases, therapy is ineffective or associated with serious side effects. Understanding the mechanisms underlying AIH pathogenesis is therefore of paramount importance to develop more effective and well tolerated agents capable of restoring immunotolerance to liver autoantigens. Imbalance between effector and regulatory cells permits liver damage perpetuation and progression in AIH. Impaired expression and regulation of CD39, an ectoenzyme key to immunotolerance maintenance, have been reported in Tregs and effector Th17-cells derived from AIH patients. Interference with these altered immunoregulatory pathways may open new therapeutic avenues that, in addition to limiting aberrant inflammatory responses, would also reconstitute immune homeostasis. In this review, we highlight the most recent findings in AIH immunopathogenesis and discuss how these could inform and direct the development of novel therapeutic tools.


Assuntos
Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/imunologia , Animais , Humanos
8.
iScience ; 24(10): 103205, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34608452

RESUMO

T cell exhaustion and dysfunction are hallmarks of severe COVID-19. To gain insights into the pathways underlying these alterations, we performed a comprehensive transcriptome analysis of peripheral-blood-mononuclear-cells (PBMCs), spleen, lung, kidney, liver, and heart obtained at autopsy from COVID-19 patients and matched controls, using the nCounter CAR-T-Characterization panel. We found substantial gene alterations in COVID-19-impacted organs, especially the lung where altered TCR repertoires are noted. Reduced TCR repertoires are also observed in PBMCs of severe COVID-19 patients. ENTPD1/CD39, an ectoenzyme defining exhausted T-cells, is upregulated in the lung, liver, spleen, and PBMCs of severe COVID-19 patients where expression positively correlates with markers of vasculopathy. Heightened ENTPD1/CD39 is paralleled by elevations in STAT-3 and HIF-1α transcription factors; and by markedly reduced CD39-antisense-RNA, a long-noncoding-RNA negatively regulating ENTPD1/CD39 at the post-transcriptional level. Limited TCR repertoire and aberrant regulation of ENTPD1/CD39 could have permissive roles in COVID-19 progression and indicate potential therapeutic targets to reverse disease.

9.
Front Immunol ; 11: 1882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072065

RESUMO

Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two of the most common IBD manifestations and are both associated with unfettered inflammation, often refractory to conventional immunosuppressive treatment. In both conditions, imbalance between effector and regulatory cell immune responses has been documented and is thought to contribute to disease pathogenesis. Purinergic signaling is a known modulator of systemic and local inflammation and growing evidences point to extracellular ATP/adenosine imbalance as a key determinant factor in IBD-associated immune dysregulation. In vitro and pre-clinical studies suggest a role for both ATP (P2) and adenosine (P1) receptors in dictating onset and severity of the disease. Moreover, our experimental data indicate ENTPD1/CD39 and CD73 ectoenzymes as pivotal modulators of intestinal inflammation, with clear translational importance. Here we will provide an updated overview of the current knowledge on the role of the purinergic signaling in modulating immune responses in IBD. We will also review and discuss the most promising findings supporting the use of purinergic-based therapies to correct immune dysregulation in CD and UC.


Assuntos
Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Purinas/imunologia , Receptores Purinérgicos P1/imunologia , Receptores Purinérgicos P2/imunologia , Animais , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Purinas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/imunologia
10.
Front Immunol ; 11: 1339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733449

RESUMO

Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.


Assuntos
Eosinófilos/imunologia , Eosinófilos/metabolismo , Transdução de Sinais/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Receptores Purinérgicos/imunologia , Receptores Purinérgicos/metabolismo
11.
J Crohns Colitis ; 14(6): 818-830, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31693091

RESUMO

BACKGROUND AND AIMS: CD39/ENTPD1 scavenges pro-inflammatory nucleotides, to ultimately generate immunosuppressive adenosine, which has a central role in immune homeostasis. Global deletion of Cd39 increases susceptibility to experimental colitis while single nucleotide polymorphisms within the human CD39 promoter, and aberrant patterns of expression during experimental hypoxia, predispose to Crohn's disease. We aimed to define the impact of transgenic human CD39 [hTG] overexpression in experimental colitis and to model therapeutic effects using the recombinant apyrase APT102 in vivo. We also determined the in vitro effects of APT102 on phenotypic and functional properties of regulatory T-lymphocytes derived from patients with Crohn's disease. METHODS: Colitis was induced by administration of dextran sulfate sodium in wild-type [WT] or hTG mice, and, in another model, by adoptive transfer of CD45RBhigh cells with or without WT or hTG regulatory T cells [Treg]. In additional experiments, mice were treated with APT102. The effects of APT102 on phenotype and function of Treg and type-1 regulatory T [Tr1] cells were also evaluated, after purification from peripheral blood and lamina propria of Crohn's disease patients [n = 38]. RESULTS: Overexpression of human CD39 attenuated experimental colitis and protected from the deleterious effects of systemic hypoxia, pharmacologically induced by deferoxamine. Administration of APT102 in vivo enhanced the beneficial effects of endogenous Cd39 boosted by the administration of the aryl hydrocarbon receptor [AhR] ligand unconjugated bilirubin [UCB]. Importantly, supplemental APT102 restored responsiveness to AhR stimulation by UCB in Treg and Tr1 cells, obtained from Crohn's disease patients. CONCLUSIONS: hCD39 overexpression ameliorated experimental colitis and prevented hypoxia-related damage in vivo. Exogenous administration of APT102 boosted AhR-mediated regulatory effects in vivo while enhancing Treg functions in Crohn's disease in vitro.


Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Doença de Crohn , Receptores de Hidrocarboneto Arílico/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apirase/administração & dosagem , Doença de Crohn/imunologia , Doença de Crohn/terapia , Humanos , Imunidade Celular , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/imunologia , Camundongos
12.
Nat Commun ; 11(1): 5894, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208731

RESUMO

CD39 is an ectonucleotidase that initiates conversion of extracellular nucleotides into immunosuppressive adenosine. CD39 is expressed by regulatory T (Treg)-cells, where it mediates immunosuppression, and by a subset of T-helper (Th) 17-cells, where it limits pathogenicity. CD39 is regulated via single-nucleotide-polymorphisms and upon activation of aryl-hydrocarbon-receptor and oxygen-mediated pathways. Here we report a mechanism of CD39 regulation that relies on the presence of an endogenous antisense RNA, transcribed from the 3'-end of the human CD39/ENTPD1 gene. CD39-specific antisense is increased in Treg and Th17-cells of Crohn's disease patients over controls. It largely localizes in the cell nucleus and regulates CD39 by interacting with nucleolin and heterogeneous-nuclear-ribonucleoprotein-A1. Antisense silencing results in CD39 upregulation in vitro and amelioration of disease activity in a trinitro-benzene-sulfonic-acid model of colitis in humanized NOD/scid/gamma mice. Inhibition/blockade of antisense might represent a therapeutic strategy to restore CD39 along with immunohomeostasis in Crohn's disease.


Assuntos
Antígenos CD/genética , Apirase/genética , Doença de Crohn/genética , RNA Antissenso/genética , Animais , Antígenos CD/imunologia , Apirase/imunologia , Doença de Crohn/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , RNA Antissenso/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
13.
Front Immunol ; 10: 507, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941139

RESUMO

Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.


Assuntos
5'-Nucleotidase/metabolismo , Apirase/metabolismo , Hepatite Autoimune/enzimologia , Hepatite Viral Humana/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Traumatismo por Reperfusão/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Ligadas por GPI/metabolismo , Hepatite Autoimune/patologia , Hepatite Viral Humana/patologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Intestinos/enzimologia , Intestinos/patologia , Fígado/enzimologia , Fígado/patologia , Receptores Purinérgicos P2/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
14.
Front Oncol ; 8: 284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151352

RESUMO

Tumor-induced immune tolerance permits growth and spread of malignant cells. Cancer cells have strong influence on surrounding cells and shape the hypoxic tumor microenvironment (TME) facilitating cancer progression. A dynamic change in glucose metabolism occurring in cancer cells and its influence on the TME are still poorly understood. Indeed, cancer and/or immune cells undergo rapid adaptation in metabolic pathways during cancer progression. Metabolic reprograming affects macrophages, T cells, and myeloid derived suppressor cells (MDSCs) among other immune cells. Their role in the TME depends on a nature and concentration of factors, such as cytokines, reactive oxygen species (ROS), growth factors, and most importantly, diffusible metabolites (i.e., lactate). Further, the amounts of available nutrients and oxygen as well as activity of microbiota may influence metabolic pathways in the TME. The roles of metabolites in regulating of the interaction between immune and cancer cell are highlighted in this review. Targeting metabolic reprogramming or signaling pathways controlling cell metabolism in the TME might be a potential strategy for anti-cancer therapy alone or in combination with current immunotherapies.

15.
Cancer Res ; 77(13): 3632-3643, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446465

RESUMO

Immunometabolism is emerging as a critical determinant of cancer pathophysiology. In this study, we explored the contributions of macrophage-expressed lactate dehydrogenase-A (LDH-A) to tumor formation in a K-Ras murine model of lung carcinoma. Myeloid-specific deletion of LDH-A promoted accumulation of macrophages with a CD86high and MCP-1high M1-like phenotype that suppressed tumor growth. This phenotypic effect was accompanied by reduced VEGF expression and angiogenesis, diminished numbers of PD-L1+ cancer cells, increased numbers of CD3+ T cells, and activation status of CD8+ T cells. Furthermore, it was associated with more pronounced antitumor T-cell immunity via induction of IL17 and IFNγ-producing CD8+ T (Tc17 and Tc1) cells, likely via suppression of lactate-driven PD-L1 expression. Our results suggest that expressions of LDH-A and lactate by macrophage in the tumor microenvironment are major drivers of T-cell immunosuppression, strongly supporting the concept of targeting stromal LDH-A as an effective strategy to blunt tumoral immune escape. Cancer Res; 77(13); 3632-43. ©2017 AACR.


Assuntos
L-Lactato Desidrogenase/deficiência , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/imunologia , Células Mieloides/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Isoenzimas/deficiência , Isoenzimas/imunologia , Isoenzimas/metabolismo , L-Lactato Desidrogenase/imunologia , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/enzimologia , Células Mieloides/patologia , Microambiente Tumoral/imunologia
16.
JCI Insight ; 2(9)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28469075

RESUMO

Unconjugated bilirubin (UCB), a product of heme oxidation, has known immunosuppressant properties but the molecular mechanisms, other than antioxidant effects, remain largely unexplored. We note that UCB modulates T helper type 17 (Th17) immune responses, in a manner dependent upon heightened expression of CD39 ectonucleotidase. UCB has protective effects in experimental colitis, where it enhances recovery after injury and preferentially boosts IL-10 production by colonic intraepithelial CD4+ cells. In vitro, UCB confers immunoregulatory properties on human control Th17 cells, as reflected by increased levels of FOXP3 and CD39 with heightened cellular suppressor ability. Upregulation of CD39 by Th17 cells is dependent upon ligation of the aryl hydrocarbon receptor (AHR) by UCB. Genetic deletion of CD39, as in Entpd1-/- mice, or dysfunction of AHR, as in Ahrd mice, abrogates these UCB salutary effects in experimental colitis. However, in inflammatory bowel disease (IBD) samples, UCB fails to confer substantive immunosuppressive properties upon Th17 cells, because of decreased AHR levels under the conditions tested in vitro. Immunosuppressive effects of UCB are mediated by AHR resulting in CD39 upregulation by Th17. Boosting downstream effects of AHR via UCB or enhancing CD39-mediated ectoenzymatic activity might provide therapeutic options to address development of Th17 dysfunction in IBD.

17.
Auton Neurosci ; 191: 117-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25979766

RESUMO

Extracellular ATP and its metabolite adenosine are increasingly recognized as key mediators of the immune response. Depending on the concentration, ATP may act as an immunostimulant or an immunodepressant, while adenosine is generally acknowledged to be a potent immunosupressor molecule. Signals delivered by extracellular ATP and adenosine are detected and transduced by P2 and P1 receptors, respectively. Virtually all immune cells express P2 and P1 receptors, thus purinergic signaling affects all aspects of immunity and inflammation. This realization has prompted a burst of novel investigations aimed at the design and synthesis of P2- or P1-targeted drugs for the treatment of chronic inflammatory diseases and cancer. In this review we will summarize the most recent developments in this field.


Assuntos
Sistema Imunitário/metabolismo , Receptores Purinérgicos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA