RESUMO
Biomedical data are generated and collected from various sources, including medical imaging, laboratory tests and genome sequencing. Sharing these data for research can help address unmet health needs, contribute to scientific breakthroughs, accelerate the development of more effective treatments and inform public health policy. Due to the potential sensitivity of such data, however, privacy concerns have led to policies that restrict data sharing. In addition, sharing sensitive data requires a secure and robust infrastructure with appropriate storage solutions. Here, we examine and compare the centralized and federated data sharing models through the prism of five large-scale and real-world use cases of strategic significance within the European data sharing landscape: the French Health Data Hub, the BBMRI-ERIC Colorectal Cancer Cohort, the federated European Genome-phenome Archive, the Observational Medical Outcomes Partnership/OHDSI network and the EBRAINS Medical Informatics Platform. Our analysis indicates that centralized models facilitate data linkage, harmonization and interoperability, while federated models facilitate scaling up and legal compliance, as the data typically reside on the data generator's premises, allowing for better control of how data are shared. This comparative study thus offers guidance on the selection of the most appropriate sharing strategy for sensitive datasets and provides key insights for informed decision-making in data sharing efforts.
Assuntos
Disciplinas das Ciências Biológicas , Disseminação de Informação , Humanos , Informática Médica/métodosRESUMO
Biomedical research projects are becoming increasingly complex and require technological solutions that support all phases of the data lifecycle and application of the FAIR principles. At the Berlin Institute of Health (BIH), we have developed and established a flexible and cost-effective approach to building customized cloud platforms for supporting research projects. The approach is based on a microservice architecture and on the management of a portfolio of supported services. On this basis, we created and maintained cloud platforms for several international research projects. In this article, we present our approach and argue that building customized cloud platforms can offer multiple advantages over using multi-project platforms. Our approach is transferable to other research environments and can be easily adapted by other projects and other service providers.
Assuntos
Pesquisa Biomédica , Computação em Nuvem , Gerenciamento de Dados , Humanos , Gerenciamento de Dados/métodosRESUMO
The European Commission's draft for the European Health Data Space (EHDS) aims to empower citizens to access their personal health data and share it with physicians and other health-care providers. It further defines procedures for the secondary use of electronic health data for research and development. Although this planned legislation is undoubtedly a step in the right direction, implementation approaches could potentially result in centralised data silos that pose data privacy and security risks for individuals. To address this concern, we propose federated personal health data spaces, a novel architecture for storing, managing, and sharing personal electronic health records that puts citizens at the centre-both conceptually and technologically. The proposed architecture puts citizens in control by storing personal health data on a combination of personal devices rather than in centralised data silos. We describe how this federated architecture fits within the EHDS and can enable the same features as centralised systems while protecting the privacy of citizens. We further argue that increased privacy and control do not contradict the use of electronic health data for research and development. Instead, data sovereignty and transparency encourage active participation in studies and data sharing. This combination of privacy-by-design and transparent, privacy-preserving data sharing can enable health-care leaders to break the privacy-exploitation barrier, which currently limits the secondary use of health data in many cases.