Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 150(3): 1635, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34598609

RESUMO

Hearing aids are commonly fit with ear canals partially or fully open-a condition that increases the risk of acoustic feedback. Feedback limits the audiometric fitting range of devices by limiting usable gain. To guide clinical decision making and device selection, we developed the Peak Height Insertion Gain (PHIG) method to detect feedback spikes in the short-term insertion gain derived from audio recordings. Using a manikin, 145 audio recordings of a speech signal were obtained from seven hearing aids. Each hearing aid was programmed for a moderate high-frequency hearing loss with systematic variations in frequency response, gain, and feedback suppression; this created audio recordings that varied the presence and strength of feedback. Using subjective ratings from 13 expert judges, the presence of feedback was determined and then classified according to its temporal and tonal qualities. These classifications were used to optimize parameters for two versions of the PHIG method based on global and local analyses. When specificity was fixed at 0.95, the sensitivity of the global analysis was 0.86 and increased to 0.95 when combined with the local analysis. Without compromising performance, a clinically expedient version of the PHIG method can be obtained using only a single measurement.


Assuntos
Auxiliares de Audição , Perda Auditiva Neurossensorial , Percepção da Fala , Acústica , Audiometria , Retroalimentação , Humanos
2.
J Acoust Soc Am ; 142(3): EL251, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28964097

RESUMO

This article reports the first use of the pressure reciprocity technique to calibrate a micro-electromechanical system (MEMS) microphone. This standardized primary calibration method is conventionally used to calibrate laboratory standard microphones. Results for the pressure reciprocity calibration of a MEMS microphone and two laboratory standard microphones are presented for the frequency range 100-10 000 Hz. Because the amplifier in the MEMS microphone package prevents reciprocal operation, this microphone was used only as a receiver of sound. A description of the procedure is presented along with checks of the measurement results and data regarding the uncertainties of these results.

3.
J Res Natl Inst Stand Technol ; 120: 164-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26958445

RESUMO

The devices calibrated most frequently by the acoustical measurement services at the National Institute of Standards and Technology (NIST) over the 50-year period from 1963 to 2012 were one-inch condenser microphones of three specific standard types: LS1Pn, LS1Po, and WS1P. Due to its long history of providing calibrations of such microphones to customers, NIST is in a unique position to analyze data concerning the long-term stability of these devices. This long history has enabled NIST to acquire and aggregate a substantial amount of repeat calibration data for a large number of microphones that belong to various other standards and calibration laboratories. In addition to determining microphone sensitivities at the time of calibration, it is important to have confidence that the microphones do not typically undergo significant drift as compared to the calibration uncertainty during the periods between calibrations. For each of the three microphone types, an average drift rate and approximate 95 % confidence interval were computed by two different statistical methods, and the results from the two methods were found to differ insignificantly in each case. These results apply to typical microphones of these types that are used in a suitable environment and handled with care. The average drift rate for Type LS1Pn microphones was -0.004 dB/year to 0.003 dB/year. The average drift rate for Type LS1Po microphones was -0.016 dB/year to 0.008 dB/year. The average drift rate for Type WS1P microphones was -0.004 dB/year to 0.018 dB/year. For each of these microphone types, the average drift rate is not significantly different from zero. This result is consistent with the performance expected of condenser microphones designed for use as transfer standards. In addition, the values that bound the confidence intervals are well within the limits specified for long-term stability in international standards. Even though these results show very good long-term stability historically for these microphone types, it is expected that periodic calibrations will always be done to track the calibration history of individual microphones and check for anomalies indicative of shifts in sensitivity.

4.
J Res Natl Inst Stand Technol ; 118: 105-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26401425

RESUMO

The directivity index is a parameter that is commonly used to characterize the performance of directional hearing aids, and is determined from the measured directional response. Since this response is different for a hearing aid worn on a person as compared to when it is in a free field, directivity index measurements of hearing aids are usually done under simulated real-ear conditions. Details are provided regarding the NIST system for measuring the hearing aid directivity index under these conditions and how this system is used to implement a standardized procedure for performing such measurements. This procedure involves a sampling method that utilizes sound source locations distributed in a semi-aligned zone array on an imaginary spherical surface surrounding a standardized acoustical test manikin. The capabilities of the system were demonstrated over the frequency range of one-third-octave bands with center frequencies from 200 Hz to 8000 Hz through NIST participation in an interlaboratory comparison. This comparison was conducted between eight different laboratories of members of Working Group S3/WG48, Hearing Aids, established by Accredited Standards Committee S3, Bioacoustics, which is administered by the Acoustical Society of America and accredited by the American National Standards Institute. Directivity measurements were made for a total of six programmed memories in two different hearing aids and for the unaided manikin with the manikin right pinna accompanying the aids. Omnidirectional, cardioid, and bidirectional response patterns were measured. Results are presented comparing the NIST data with the reference values calculated from the data reported by all participating laboratories.

5.
J Res Natl Inst Stand Technol ; 116(5): 761-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-26989598

RESUMO

A new National Institute of Standards and Technology (NIST) measurement service has been developed for determining the pressure sensitivities of American National Standards Institute and International Electrotechnical Commission type LS2aP laboratory standard microphones over the frequency range 31.5 Hz to 20 000 Hz. At most frequencies common to the new service and the old service, the values of the expanded uncertainties of the new service are one-half the corresponding values of the old service, or better. The new service uses an improved version of the system employed by NIST in the Consultative Committee for Acoustics, Ultrasound, and Vibration (CCAUV) key comparison CCAUV.A-K3. Measurements are performed using a long and a short air-filled plane-wave coupler. For each frequency in the range 31.5 Hz to 2000 Hz, the reported sensitivity level is the average of data from both couplers. For each frequency above 2000 Hz, the reported sensitivity level is determined with data from the short coupler only. For proof test data in the frequency range 31.5 Hz to 2000 Hz, the average absolute differences between data from the long and the short couplers are much smaller than the expanded uncertainties.

6.
JASA Express Lett ; 1(8): 082803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-36154252

RESUMO

A precision laser-based comparison calibration method for laboratory standard microphones is described that uses reference microphones calibrated by the pressure reciprocity method. Electrical drive current and diaphragm velocity are measured while the microphones are driven as transmitters/sources of sound; the diaphragm velocity is measured using scanning laser Doppler vibrometry. Sensitivities determined using this method display very good agreement with those determined directly by reciprocity for seven such test microphones at 250 and 1000 Hz. At these frequencies, the expanded (coverage factor k = 2) uncertainties of this comparison calibration method for these microphones are ±0.05 dB.


Assuntos
Som , Transdutores , Calibragem , Lasers
7.
J Res Natl Inst Stand Technol ; 113(2): 97-119, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-27096114

RESUMO

To achieve an acceptable degree of accuracy at high frequencies in some standardized methods for primary calibration of laboratory standard (LS) microphones, the front cavity depth lfc of each microphone must be known. This dimension must be measured using non-contact methods to prevent damage to the microphone diaphragm. The basic capabilities of an optical depth-measuring microscope were demonstrated by the agreement of its measurements within 0.7 µm of the known values of reference gage blocks. Using this microscope, two basic methods were applied to measure lfc . One (D) uses direct measurements at the microphone front surface annulus and conventional data reduction techniques. The other (GB) uses measurements at the surface of a gage block placed on the annulus, and plane-fitting data reduction techniques intended to reduce the effects of the slightly imperfect geometries of the microphones. The GB method was developed to provide a smoother surface of measurement than the relatively rough surface of the annulus, and to simulate the contact that occurs between the annulus and the smooth, plane surface of an acoustic coupler during microphone calibration. Using these methods, full data sets were obtained at 33 measurement positions (D), or 25 positions (GB). In addition, D and GB subsampling methods were applied by using subsamples of either the D or the GB full data sets. All these methods were applied to six LS microphones, three each of two different types. The GB subsampling methods are preferred for several reasons. The measurement results for lfc obtained by these methods agree well with those obtained by the GB method using the full data set. The expanded uncertainties of results from the GB subsampling methods are not very different from the expanded uncertainty of results from the GB method using the full data set, and are smaller than the expanded uncertainties of results from the D subsampling methods. Measurements of lfc using the GB subsampling method with only nine measurement positions exhibit expanded uncertainties (with coverage factor k = 2) within 4 µm, and can improve the uncertainty of microphone calibrations by an order of magnitude over the result from use of generic standardized microphone type nominal lfc values and tolerance limits.

8.
J Res Natl Inst Stand Technol ; 112(2): 107-14, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-27110458

RESUMO

The electrical measurements required during the primary calibrations of laboratory standard microphones by the reciprocity method can be influenced by power line interference. Because of this influence, the protocols of international inter-laboratory key comparisons of microphone calibrations usually have not included measurements at power line frequencies. Such interference has been observed in microphone output voltage measurements made with a microphone pressure reciprocity calibration system under development at NIST. This system was configured for a particular type of standard microphone in such a way that measurements of relatively small signal levels, which are more susceptible to the effect of power line interference, were required. This effect was investigated by acquiring microphone output voltage measurement data with the power line frequency adjusted to move the frequency of the interference relative to the center frequency of the measurement system passband. These data showed that the effect of power line interference for this system configuration can be more than one percent at test frequencies harmonically related to the power line frequency. These data also showed that adjusting the power line frequency to separate the interference and test frequencies by as little as 1.0 Hz can reduce the effect of the interference by at least an order of magnitude. Adjustment of the power line frequency could enable accurate measurements at test frequencies that otherwise might be avoided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA