Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 163(1): 95-107, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26406373

RESUMO

To understand how different diets, the consumers' gut microbiota, and the enteric nervous system (ENS) interact to regulate gut motility, we developed a gnotobiotic mouse model that mimics short-term dietary changes that happen when humans are traveling to places with different culinary traditions. Studying animals transplanted with the microbiota from humans representing diverse culinary traditions and fed a sequence of diets representing those of all donors, we found that correlations between bacterial species abundances and transit times are diet dependent. However, the levels of unconjugated bile acids-generated by bacterial bile salt hydrolases (BSH)-correlated with faster transit, including during consumption of a Bangladeshi diet. Mice harboring a consortium of sequenced cultured bacterial strains from the Bangladeshi donor's microbiota and fed a Bangladeshi diet revealed that the commonly used cholekinetic spice, turmeric, affects gut motility through a mechanism that reflects bacterial BSH activity and Ret signaling in the ENS. These results demonstrate how a single food ingredient interacts with a functional microbiota trait to regulate host physiology.


Assuntos
Dieta , Motilidade Gastrointestinal , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Modelos Animais , Viagem , Animais , Bangladesh , Ácidos e Sais Biliares/metabolismo , Curcuma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Organismos Livres de Patógenos Específicos
2.
Sci Transl Med ; 8(366): 366ra164, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881825

RESUMO

To model how interactions among enteropathogens and gut microbial community members contribute to undernutrition, we colonized gnotobiotic mice fed representative Bangladeshi diets with sequenced bacterial strains cultured from the fecal microbiota of two 24-month-old Bangladeshi children: one healthy and the other underweight. The undernourished donor's bacterial collection contained an enterotoxigenic Bacteroides fragilis strain (ETBF), whereas the healthy donor's bacterial collection contained two nontoxigenic strains of B. fragilis (NTBF). Analyses of mice harboring either the unmanipulated culture collections or systematically manipulated versions revealed that ETBF was causally related to weight loss in the context of its native community but not when introduced into the healthy donor's community. This phenotype was transmissible from the dams to their offspring and was associated with derangements in host energy metabolism manifested by impaired tricarboxylic acid cycle activity and decreased acyl-coenzyme A utilization. NTBF reduced ETBF's expression of its enterotoxin and mitigated the effects of ETBF on the transcriptomes of other healthy donor community members. These results illustrate how intraspecific (ETBF-NTBF) and interspecific interactions influence the effects of harboring B. fragilis.


Assuntos
Transtornos da Nutrição Infantil/microbiologia , Microbioma Gastrointestinal , Animais , Bacteroides fragilis/isolamento & purificação , Bangladesh , Caquexia/microbiologia , Pré-Escolar , Dieta , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes/genética , Humanos , Lactente , Masculino , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA