Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 367, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776334

RESUMO

BACKGROUND: Brahma (BRM) is the only catalytic subunit of the SWI/SNF chromatin-remodeling complex of Drosophila melanogaster. The function of SWI/SNF in transcription has long been attributed to its ability to remodel nucleosomes, which requires the ATPase activity of BRM. However, recent studies have provided evidence for a non-catalytic function of BRM in the transcriptional regulation of a few specific genes. RESULTS: Here we have used RNA-seq and ChIP-seq to identify the BRM target genes in S2 cells, and we have used a catalytically inactive BRM mutant (K804R) that is unable to hydrolyze ATP to investigate the magnitude of the non-catalytic function of BRM in transcription regulation. We show that 49% of the BRM target genes in S2 cells are regulated through mechanisms that do not require BRM to have an ATPase activity. We also show that the catalytic and non-catalytic mechanisms of SWI/SNF regulation operate on two subsets of genes that differ in promoter architecture and are linked to different biological processes. CONCLUSIONS: This study shows that the non-catalytic role of SWI/SNF in transcription regulation is far more prevalent than previously anticipated and that the genes that are regulated by SWI/SNF through ATPase-dependent and ATPase-independent mechanisms have specialized roles in different cellular and developmental processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Nucleossomos/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Genômica , Regiões Promotoras Genéticas/genética
2.
RNA Biol ; 11(2): 134-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24526065

RESUMO

The mod(mdg4) locus of Drosophila melanogaster contains several transcription units encoded on both DNA strands. The mod(mdg4) pre-mRNAs are alternatively spliced, and a very significant fraction of the mature mod(mdg4) mRNAs are formed by trans-splicing. We have studied the transcripts derived from one of the anti-sense regions within the mod(mdg4) locus in order to shed light on the expression of this complex locus. We have characterized the expression of anti-sense mod(mdg4) transcripts in S2 cells, mapped their transcription start sites and cleavage sites, identified and quantified alternatively spliced transcripts, and obtained insight into the regulation of the mod(mdg4) trans-splicing. In a previous study, we had shown that the alternative splicing of some mod(mdg4) transcripts was regulated by Brahma (BRM), the ATPase subunit of the SWI/SNF chromatin-remodeling complex. Here we show, using RNA interference and overexpression of recombinant BRM proteins, that the levels of BRM affect specifically the abundance of a trans-spliced mod(mdg4) mRNA isoform in both S2 cells and larvae. This specific effect on trans-splicing is accompanied by a local increase in the density of RNA polymerase II and by a change in the phosphorylation state of the C-terminal domain of the large subunit of RNA polymerase II. Interestingly, the regulation of the mod(mdg4) splicing by BRM is independent of the ATPase activity of BRM, which suggests that the mechanism by which BRM modulates trans-splicing is independent of its chromatin-remodeling activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interferência de RNA , RNA/metabolismo , Transativadores/metabolismo , Trans-Splicing , Fatores de Transcrição/genética , Processamento Alternativo , Animais , Linhagem Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Clivagem do RNA , Isoformas de RNA/metabolismo , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição
3.
BMC Mol Biol ; 12: 46, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22047075

RESUMO

BACKGROUND: The SWI/SNF chromatin remodeling factors have the ability to remodel nucleosomes and play essential roles in key developmental processes. SWI/SNF complexes contain one subunit with ATPase activity, which in Drosophila melanogaster is called Brahma (Brm). The regulatory activities of SWI/SNF have been attributed to its influence on chromatin structure and transcription regulation, but recent observations have revealed that the levels of Brm affect the relative abundances of transcripts that are formed by alternative splicing and/or polyadenylation of the same pre-mRNA. RESULTS: We have investigated whether the function of Brm in pre-mRNA processing in Drosophila melanogaster is mediated by Brm alone or by the SWI/SNF complex. We have analyzed the effects of depleting individual SWI/SNF subunits on pre-mRNA processing throughout the genome, and we have identified a subset of transcripts that are affected by depletion of the SWI/SNF core subunits Brm, Snr1 or Mor. The fact that depletion of different subunits targets a subset of common transcripts suggests that the SWI/SNF complex is responsible for the effects observed on pre-mRNA processing when knocking down Brm. We have also depleted Brm in larvae and we have shown that the levels of SWI/SNF affect the pre-mRNA processing outcome in vivo. CONCLUSIONS: We have shown that SWI/SNF can modulate alternative pre-mRNA processing, not only in cultured cells but also in vivo. The effect is restricted to and specific for a subset of transcripts. Our results provide novel insights into the mechanisms by which SWI/SNF regulates transcript diversity and proteomic diversity in higher eukaryotes.


Assuntos
Processamento Alternativo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA