Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 92(16): 11204-11212, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32639142

RESUMO

Acetylation of α-tubulin at conserved lysine 40 (K40) amino acid residue regulates microtubule dynamics and controls a wide range of cellular activities. Dysregulated microtubule dynamics characterized by differential α-tubulin acetylation is a hallmark of cancer, neurodegeneration, and other complex disorders. Hence, accurate quantitation of α-tubulin acetylation is required in human disease and animal model studies. We developed a novel antibody-free proteomics assay to measure α-tubulin acetylation targeting protease AspN-generated peptides harboring K40 site. Using the synthetic unmodified and acetylated stable isotope labeled peptides DKTIGGG and DKTIGGGD, we demonstrate assay linearity across 4 log magnitude and reproducibility of <10% coefficient of variation. The assay accuracy was validated by titration of 10-80% mixture of acetylated/nonacetylated α-tubulin peptides in the background of human olfactory neurosphere-derived stem (ONS) cell matrix. Furthermore, in agreement with antibody-based high content microscopy analysis, the targeted proteomics assay reported an induction of α-tubulin K40 acetylation upon Trichostatin A stimulation of ONS cells. Independently, we found 35.99% and 16.11% α-tubulin acetylation for mouse spinal cord and brain homogenate tissue, respectively, as measured by our assay. In conclusion, this simple, antibody-free proteomics assay enables quantitation of α-tubulin acetylation, and is applicable across various fields of biology and medicine.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica/métodos , Tubulina (Proteína)/análise , Acetilação , Sequência de Aminoácidos , Animais , Humanos , Espectrometria de Mobilidade Iônica , Lisina/química , Camundongos Endogâmicos C57BL , Ressonância Magnética Nuclear Biomolecular , Células-Tronco , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
2.
Neuropediatrics ; 50(4): 248-252, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31064022

RESUMO

BACKGROUND: Fucosidosis is a rare lysosomal disorder caused by mutations in the FUCA1 gene. We describe here a novel homozygous mutation in FUCA1 in an Indian fucosidosis case. Furthermore, we summarize the clinical and genetic findings in the most recently reported individuals with fucosidosis. CASE: The proband is an 8-year-old boy born to consanguineous parents. He had generalized dystonia and bilateral spasticity as well as coarse facies, dysostosis multiplex, recurrent infections, angiokeratoma corporis diffusum, and visceromegaly. Whole exome sequencing analysis detected a homozygous canonical splice variant in the FUCA1 gene [Chr1(GRCh37):g.24172346C > T; NM_000147.4:c.1261-1G > A], not previously reported as causative of a human phenotype. Low levels of α-fucosidase in patient leukocytes and a positive qualitative urine based thin layer chromatography test for fucosidosis confirmed the diagnosis. Our literature review identified 89 cases of fucosidosis since the last major review. We show that dystonia is a rare manifestation (12%) and that only a small minority of cases receive treatment with transplantation (3.37%). CONCLUSION: We report a novel homozygous mutation in FUCA1 as the cause of severe neurological phenotype including generalized dystonia. Early recognition of fucosidosis may be important for consideration of promising treatment options, such as bone marrow transplantation.


Assuntos
Distonia/etiologia , Fucosidose/complicações , Mutação , alfa-L-Fucosidase/genética , Criança , Distonia/genética , Fucosidose/genética , Humanos , Masculino , Fenótipo
3.
Neurogenetics ; 17(4): 265-270, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27679996

RESUMO

We performed whole genome sequencing (WGS) in nine families from India with early-onset hereditary spastic paraplegia (HSP). We obtained a genetic diagnosis in 4/9 (44 %) families within known HSP genes (DDHD2 and CYP2U1), as well as perixosomal biogenesis disorders (PEX16) and GM1 gangliosidosis (GLB1). In the remaining patients, no candidate structural variants, copy number variants or predicted splice variants affecting an extended candidate gene list were identified. Our findings demonstrate the efficacy of using WGS for diagnosing early-onset HSP, particularly in consanguineous families (4/6 diagnosed), highlighting that two of the diagnoses would not have been made using a targeted approach.


Assuntos
Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Sequenciamento Completo do Genoma , Família 2 do Citocromo P450/genética , Feminino , Heterozigoto , Homozigoto , Humanos , Índia , Masculino , Proteínas de Membrana/genética , Mutação , Linhagem , Fosfolipases/genética , beta-Galactosidase/genética
4.
Hum Mol Genet ; 22(12): 2495-509, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23474819

RESUMO

The autosomal recessive disorder ataxia-telangiectasia (A-T) is characterized by genome instability, cancer predisposition and neurodegeneration. Although the role of ataxia-telangiectasia mutated (ATM) protein, the protein defective in this syndrome, is well described in the response to DNA damage, its role in protecting the nervous system is less clear. We describe the establishment and characterization of patient-specific stem cells that have the potential to address this shortcoming. Olfactory neurosphere (ONS)-derived cells were generated from A-T patients, which expressed stem cell markers and exhibited A-T molecular and cellular characteristics that included hypersensitivity to radiation, defective radiation-induced signaling and cell cycle checkpoint defects. Introduction of full-length ATM cDNA into these cells corrected defects in the A-T cellular phenotype. Gene expression profiling and pathway analysis revealed defects in multiple cell signaling pathways associated with ATM function, with cell cycle, cell death and DNA damage response pathways being the most significantly dysregulated. A-T ONS cells were also capable of differentiating into neural progenitors, but they were defective in neurite formation, number of neurites and length of these neurites. Thus, ONS cells are a patient-derived neural stem cell model that recapitulate the phenotype of A-T, do not require genetic reprogramming, have the capacity to differentiate into neurons and have potential to delineate the neurological defect in these patients.


Assuntos
Ataxia Telangiectasia/fisiopatologia , Neurônios/citologia , Condutos Olfatórios/citologia , Células-Tronco/citologia , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Lactente , Masculino , Modelos Biológicos , Mucosa , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Células-Tronco/metabolismo , Células-Tronco/patologia
5.
Parkinsonism Relat Disord ; 124: 107010, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772265

RESUMO

PURPOSE: We investigated the contribution of genomic data reanalysis to the diagnostic yield of dystonia patients who remained undiagnosed after prior genome sequencing. METHODS: Probands with heterogeneous dystonia phenotypes who underwent initial genome sequencing (GS) analysis in 2019 were included in the reanalysis, which was performed through gene-specific discovery collaborations and systematic genomic data reanalysis. RESULTS: Initial GS analysis in 2019 (n = 111) identified a molecular diagnosis in 11.7 % (13/111) of cases. Reanalysis between 2020 and 2023 increased the diagnostic yield by 7.2 % (8/111); 3.6 % (4/111) through focused gene-specific clinical correlation collaborative efforts [VPS16 (two probands), AOPEP and POLG], and 3.6 % (4/111) by systematic reanalysis completed in 2023 [NUS1 (two probands) and DDX3X variants, and a microdeletion encompassing VPS16]. Seven of these patients had a high phenotype-based dystonia score ≥3. Notable unverified findings in four additional cases included suspicious variants of uncertain significance in FBXL4 and EIF2AK2, and potential phenotypic expansion associated with SLC2A1 and TREX1 variants. CONCLUSION: GS data reanalysis increased the diagnostic yield from 11.7 % to 18.9 %, with potential extension up to 22.5 %. While optimal timing for diagnostic reanalysis remains to be determined, this study demonstrates that periodic re-interrogation of dystonia GS datasets can provide additional genetic diagnoses, which may have significant implications for patients and their families.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Masculino , Feminino , Adulto , Distúrbios Distônicos/genética , Distúrbios Distônicos/diagnóstico , Distonia/genética , Distonia/diagnóstico , Pessoa de Meia-Idade , Adulto Jovem , Sequenciamento Completo do Genoma , Adolescente , Criança , Fenótipo
6.
STAR Protoc ; 4(2): 102325, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300830

RESUMO

High-throughput imaging allows in vitro assessment of neuron morphology for screening populations under developmental, homeostatic, and/or disease conditions. Here, we present a protocol to differentiate cryopreserved human cortical neuronal progenitors into mature cortical neurons for high-throughput imaging analysis. We describe the use of a notch signaling inhibitor to generate homogeneous neuronal populations at densities amenable to individual neurite identification. We detail neurite morphology assessment via measuring multiple parameters including neurite length, branches, roots, segments and extremities, and neuron maturation.

7.
Front Neurosci ; 17: 1073516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144097

RESUMO

HSP-SPAST is the most common form of hereditary spastic paraplegia (HSP), a neurodegenerative disease causing lower limb spasticity. Previous studies using HSP-SPAST patient-derived induced pluripotent stem cell cortical neurons have shown that patient neurons have reduced levels of acetylated α-tubulin, a form of stabilized microtubules, leading to a chain of downstream effects eventuating in increased vulnerability to axonal degeneration. Noscapine treatment rescued these downstream effects by restoring the levels of acetylated α-tubulin in patient neurons. Here we show that HSP-SPAST patient non-neuronal cells, peripheral blood mononuclear cells (PBMCs), also have the disease-associated effect of reduced levels of acetylated α-tubulin. Evaluation of multiple PBMC subtypes showed that patient T cell lymphocytes had reduced levels of acetylated α-tubulin. T cells make up to 80% of all PBMCs and likely contributed to the effect of reduced acetylated α-tubulin levels seen in overall PBMCs. We further showed that mouse administered orally with increasing concentrations of noscapine exhibited a dose-dependent increase of noscapine levels and acetylated α-tubulin in the brain. A similar effect of noscapine treatment is anticipated in HSP-SPAST patients. To measure acetylated α-tubulin levels, we used a homogeneous time resolved fluorescence technology-based assay. This assay was sensitive to noscapine-induced changes in acetylated α-tubulin levels in multiple sample types. The assay is high throughput and uses nano-molar protein concentrations, making it an ideal assay for evaluation of noscapine-induced changes in acetylated α-tubulin levels. This study shows that HSP-SPAST patient PBMCs exhibit disease-associated effects. This finding can help expedite the drug discovery and testing process.

8.
Front Neurosci ; 17: 1231584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766787

RESUMO

SPG7 is the most common form of autosomal recessive hereditary spastic paraplegia (HSP). There is a lack of HSP-SPG7 human neuronal models to understand the disease mechanism and identify new drug treatments. We generated a human neuronal model of HSP-SPG7 using induced pluripotent stem (iPS) cell technology. We first generated iPS cells from three HSP-SPG7 patients carrying different disease-causing variants and three healthy controls. The iPS cells were differentiated to form neural progenitor cells (NPCs) and then from NPCs to mature cortical neurons. Mitochondrial and neuronal defects were measured using a high throughout imaging and analysis-based assay in live cells. Our results show that compared to control NPCs, patient NPCs had aberrant mitochondrial morphology with increased mitochondrial size and reduced membrane potential. Patient NPCs develop to form mature cortical neurons with amplified mitochondrial morphology and functional defects along with defects in neuron morphology - reduced neurite complexity and length, reduced synaptic gene, protein expression and activity, reduced viability and increased axonal degeneration. Treatment of patient neurons with Bz-423, a mitochondria permeability pore regulator, restored the mitochondrial and neurite morphological defects and mitochondrial membrane potential back to control neuron levels and rescued the low viability and increased degeneration in patient neurons. This study establishes a direct link between mitochondrial and neuronal defects in HSP-SPG7 patient neurons. We present a strategy for testing mitochondrial targeting drugs to rescue neuronal defects in HSP-SPG7 patient neurons.

9.
Genes (Basel) ; 14(9)2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37761896

RESUMO

Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity. There is no disease-modifying treatment currently available. Therefore, standardized, validated outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review of outcome measures and biomarkers for HSP to provide recommendations for future studies and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science, and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and neurofilament light chain levels were the most promising biomarkers in terms of being able to differentiate patients from controls and correlate with clinical disease severity. Overall, we found variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing biomarkers, and (3) inclusion of PROMs in HSP clinical trials.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/terapia , Imagem de Tensor de Difusão , Paraplegia , Biomarcadores , Avaliação de Resultados em Cuidados de Saúde
10.
Sci Rep ; 11(1): 16635, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404843

RESUMO

A central need for neurodegenerative diseases is to find curative drugs for the many clinical subtypes, the causative gene for most cases being unknown. This requires the classification of disease cases at the genetic and cellular level, an understanding of disease aetiology in the subtypes and the development of phenotypic assays for high throughput screening of large compound libraries. Herein we describe a method that facilitates these requirements based on cell morphology that is being increasingly used as a readout defining cell state. In patient-derived fibroblasts we quantified 124 morphological features in 100,000 cells from 15 people with two genotypes (SPAST and SPG7) of Hereditary Spastic Paraplegia (HSP) and matched controls. Using machine learning analysis, we distinguished between each genotype and separated them from controls. Cell morphologies changed with treatment with noscapine, a tubulin-binding drug, in a genotype-dependent manner, revealing a novel effect on one of the genotypes (SPG7). These findings demonstrate a method for morphological profiling in fibroblasts, an accessible non-neural cell, to classify and distinguish between clinical subtypes of neurodegenerative diseases, for drug discovery, and potentially for biomarkers of disease severity and progression.


Assuntos
Genótipo , Preparações Farmacêuticas , Análise de Célula Única/métodos , Paraplegia Espástica Hereditária/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , Progressão da Doença , Humanos , Aprendizado de Máquina , Metaloendopeptidases/genética , Mutação , Índice de Gravidade de Doença , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Espastina/genética
11.
Front Neurosci ; 14: 820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973427

RESUMO

Mutations in SPG7 and SPAST are common causes of hereditary spastic paraplegia (HSP). While some SPG7 mutations cause paraplegin deficiency, other SPG7 mutations cause increased paraplegin expression. Mitochondrial function has been studied in models that are paraplegin-deficient (human, mouse, and Drosophila models with large exonic deletions, null mutations, or knockout models) but not in models of mutations that express paraplegin. Here, we evaluated mitochondrial function in olfactory neurosphere-derived cells, derived from patients with a variety of SPG7 mutations that express paraplegin and compared them to cells derived from healthy controls and HSP patients with SPAST mutations, as a disease control. We quantified paraplegin expression and an extensive range of mitochondrial morphology measures (fragmentation, interconnectivity, and mass), mitochondrial function measures (membrane potential, oxidative phosphorylation, and oxidative stress), and cell proliferation. Compared to control cells, SPG7 patient cells had increased paraplegin expression, fragmented mitochondria with low interconnectivity, reduced mitochondrial mass, decreased mitochondrial membrane potential, reduced oxidative phosphorylation, reduced ATP content, increased mitochondrial oxidative stress, and reduced cellular proliferation. Mitochondrial dysfunction was specific to SPG7 patient cells and not present in SPAST patient cells, which displayed mitochondrial functions similar to control cells. The mitochondrial dysfunction observed here in SPG7 patient cells that express paraplegin was similar to the dysfunction reported in cell models without paraplegin expression. The p.A510V mutation was common to all patients and was the likely species associated with increased expression, albeit seemingly non-functional. The lack of a mitochondrial phenotype in SPAST patient cells indicates genotype-specific mechanisms of disease in these HSP patients.

12.
Front Neurosci ; 14: 401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457567

RESUMO

Hereditary spastic paraplegia (HSP) is a group of inherited disorders characterized by progressive spasticity and paralysis of the lower limbs. Autosomal dominant mutations in SPAST gene account for ∼40% of adult-onset patients. We have previously shown that SPAST patient cells have reduced organelle transport and are therefore more sensitive to oxidative stress. To test whether these effects are present in neuronal cells, we first generated 11 induced pluripotent stem (iPS) cell lines from fibroblasts of three healthy controls and three HSP patients with different SPAST mutations. These cells were differentiated into FOXG1-positive forebrain neurons and then evaluated for multiple aspects of axonal transport and fragmentation. Patient neurons exhibited reduced levels of SPAST encoded spastin, as well as a range of axonal deficits, including reduced levels of stabilized microtubules, lower peroxisome transport speed as a consequence of reduced microtubule-dependent transport, reduced number of peroxisomes, and higher density of axon swellings. Patient axons fragmented significantly more than controls following hydrogen peroxide exposure, suggesting for the first time that the SPAST patient axons are more sensitive than controls to the deleterious effects of oxidative stress. Treatment of patient neurons with tubulin-binding drugs epothilone D and noscapine rescued axon peroxisome transport and protected them against axon fragmentation induced by oxidative stress, showing that SPAST patient axons are vulnerable to oxidative stress-induced degeneration as a consequence of reduced axonal transport.

14.
Parkinsonism Relat Disord ; 69: 111-118, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31731261

RESUMO

INTRODUCTION: Dystonia is a clinically and genetically heterogeneous disorder and a genetic cause is often difficult to elucidate. This is the first study to use whole genome sequencing (WGS) to investigate dystonia in a large sample of affected individuals. METHODS: WGS was performed on 111 probands with heterogenous dystonia phenotypes. We performed analysis for coding and non-coding variants, copy number variants (CNVs), and structural variants (SVs). We assessed for an association between dystonia and 10 known dystonia risk variants. RESULTS: A genetic diagnosis was obtained for 11.7% (13/111) of individuals. We found that a genetic diagnosis was more likely in those with an earlier age at onset, younger age at testing, and a combined dystonia phenotype. We identified pathogenic/likely-pathogenic variants in ADCY5 (n = 1), ATM (n = 1), GNAL (n = 2), GLB1 (n = 1), KMT2B (n = 2), PRKN (n = 2), PRRT2 (n = 1), SGCE (n = 2), and THAP1 (n = 1). CNVs were detected in 3 individuals. We found an association between the known risk variant ARSG rs11655081 and dystonia (p = 0.003). CONCLUSION: A genetic diagnosis was found in 11.7% of individuals with dystonia. The diagnostic yield was higher in those with an earlier age of onset, younger age at testing, and a combined dystonia phenotype. WGS may be particularly relevant for dystonia given that it allows for the detection of CNVs, which accounted for 23% of the genetically diagnosed cases.


Assuntos
Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/genética , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
15.
Brain Sci ; 8(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065201

RESUMO

Hereditary spastic paraplegia is an inherited, progressive paralysis of the lower limbs first described by Adolph Strümpell in 1883 with a further detailed description of the disease by Maurice Lorrain in 1888. Today, more than 100 years after the first case of HSP was described, we still do not know how mutations in HSP genes lead to degeneration of the corticospinal motor neurons. This review describes how patient-derived stem cells contribute to understanding the disease mechanism at the cellular level and use this for discovery of potential new therapeutics, focusing on SPAST mutations, the most common cause of HSP.

16.
Mol Genet Metab Rep ; 16: 46-51, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30094183

RESUMO

Zellweger syndrome spectrum disorders are caused by mutations in any of at least 12 different PEX genes. This includes PEX16, an important regulator of peroxisome biogenesis. Using whole genome sequencing, we detected previously unreported, biallelic variants in PEX16 [NM_004813.2:c.658G>A, p.(Ala220Thr) and NM_004813.2:c.830G>A, p.(Arg277Gln)] in an individual with leukodystrophy, spastic paraplegia, cerebellar ataxia, and craniocervical dystonia with normal plasma very long chain fatty acids. Using olfactory-neurosphere derived cells, a population of neural stem cells, we showed patient cells had reduced peroxisome density and increased peroxisome size, replicating previously reported findings in PEX16 cell lines. Along with alterations in peroxisome morphology, patient cells also had impaired peroxisome function with reduced catalase activity. Furthermore, patient cells had reduced oxidative stress levels after exposure to hydrogen-peroxide (H2O2), which may be a result of compensation by H2O2 metabolising enzymes other than catalase to preserve peroxisome-related cell functions. Our findings of impaired catalase activity and altered oxidative stress response are novel. Our study expands the phenotype of PEX16 mutations by including dystonia and provides further insights into the pathological mechanisms underlying PEX16-associated disorders. Additional studies of the full spectrum of peroxisomal dysfunction could improve our understanding of the mechanism underlying PEX16-associated disorders.

17.
Methods Mol Biol ; 1599: 391-400, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28477134

RESUMO

The molecular pathogenesis of ataxia-telangiectasia (A-T) is not yet fully understood, and a versatile cellular model is required for in vitro studies. The occurrence of continuous neurogenesis and easy access make the multipotent adult stem cells from the olfactory mucosa within the nasal cavity a potential cellular model. We describe an efficient method to establish neuron-like cells from olfactory mucosa biopsies derived from A-T patients for the purpose of studying the cellular and molecular aspects of this debilitating disease.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo
19.
Sci Rep ; 6: 27004, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229699

RESUMO

Hereditary spastic paraplegia (HSP) is an inherited neurological condition that leads to progressive spasticity and gait abnormalities. Adult-onset HSP is most commonly caused by mutations in SPAST, which encodes spastin a microtubule severing protein. In olfactory stem cell lines derived from patients carrying different SPAST mutations, we investigated microtubule-dependent peroxisome movement with time-lapse imaging and automated image analysis. The average speed of peroxisomes in patient-cells was slower, with fewer fast moving peroxisomes than in cells from healthy controls. This was not because of impairment of peroxisome-microtubule interactions because the time-dependent saltatory dynamics of movement of individual peroxisomes was unaffected in patient-cells. Our observations indicate that average peroxisome speeds are less in patient-cells because of the lower probability of individual peroxisome interactions with the reduced numbers of stable microtubules: peroxisome speeds in patient cells are restored by epothilone D, a tubulin-binding drug that increases the number of stable microtubules to control levels. Patient-cells were under increased oxidative stress and were more sensitive than control-cells to hydrogen peroxide, which is primarily metabolised by peroxisomal catalase. Epothilone D also ameliorated patient-cell sensitivity to hydrogen-peroxide. Our findings suggest a mechanism for neurodegeneration whereby SPAST mutations indirectly lead to impaired peroxisome transport and oxidative stress.


Assuntos
Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Peroxissomos/metabolismo , Paraplegia Espástica Hereditária/genética , Espastina/genética , Adulto , Idade de Início , Linhagem Celular , Epotilonas/farmacologia , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Movimento/efeitos dos fármacos , Movimento/fisiologia , Mutação , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/patologia , Estresse Oxidativo , Peroxissomos/efeitos dos fármacos , Peroxissomos/ultraestrutura , Transdução de Sinais , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia , Espastina/metabolismo , Imagem com Lapso de Tempo , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA