RESUMO
The safety and efficacy of kratom (Mitragyna speciosa) for treatment of pain is highly controversial. Kratom produces more than 40 structurally related alkaloids, but most studies have focused on just two of these, mitragynine and 7-hydroxymitragynine. Here, we profiled 53 commercial kratom products using untargeted LC-MS metabolomics, revealing two distinct chemotypes that contain different levels of the alkaloid speciofoline. Both chemotypes were confirmed with DNA barcoding to be M. speciosa. To evaluate the biological relevance of variable speciofoline levels in kratom, we compared the opioid receptor binding activity of speciofoline, mitragynine, and 7-hydroxymitragynine. Mitragynine and 7-hydroxymitragynine function as partial agonists of the human µ-opioid receptor, while speciofoline does not exhibit measurable binding affinity at the µ-, δ- or Æ-opioid receptors. Importantly, mitragynine and 7-hydroxymitragynine demonstrate functional selectivity for G-protein signaling, with no measurable recruitment of ß-arrestin. Overall, the study demonstrates the unique binding and functional profiles of the kratom alkaloids, suggesting potential utility for managing pain, but further studies are needed to follow up on these in vitro findings. All three kratom alkaloids tested inhibited select cytochrome P450 enzymes, suggesting a potential risk for adverse interactions when kratom is co-consumed with drugs metabolized by these enzymes.
Assuntos
Analgésicos/farmacologia , Mitragyna/química , Extratos Vegetais/química , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina e Secologanina/farmacologia , Cromatografia Líquida , Humanos , Metabolômica , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em TandemRESUMO
In pregnant rock hyraxes isolated leucocytes metabolise both [3H]pregnenolone and [3H]progesterone while whole blood, erythrocytes and an erythrocyte/leucocyte mixture only metabolised [3H]progesterone. Plasma displayed no tendency to metabolically convert any one of these two steroids. In whole blood [3H]progesterone appears to be converted to 5alpha-pregnane-3,20-dione and a compound with chromatographic properties similar to that of 5alpha-pregnan-3alpha-ol-20-one. 5Alpha-pregnane-3,20-dione exhibited a high relative binding affinity for the uterine progesterone eceptor (94%), but 5alpha-pregnan-3alpha-ol-20-one displayed very little affinity for the same receptor (0.4%). 5Alpha-pregnane-3,20-dione may therefore aid in the maintenance of pregnancy. Corpora lutea metabolised progesterone to 17alpha-hydroxyprogesterone, a compound exhibiting no progestational function because of its low relative binding affinity for the uterine progesterone receptor (2%). Progesterone appears to be the main product of the corpus luteum. However, 5alpha-pregnane-3,20-dione circulated at concentrations approximately 8.5 times higher than progesterone, probably due to the metabolic conversion of progesterone to 5alpha-pregnane-3,20-dione by the blood. We conclude that in the hyrax progesterone, produced by the corpora lutea, enters the circulation, where it is reduced to 5alpha-pregnanes. 5Alpha-pregane-3,20-dione may then be transported to the uterus where it binds to the progesterone receptor to assist in the maintenance of pregnancy. This mechanism appears to be analogous to that of the African elephant which is phylogenetically related to the hyrax, except that in the elephant the 5alpha-reduced metabolites are produced by luteal tissue and not the blood.