Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(22): 5965-5982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33683153

RESUMO

In the field of (food) toxicology, there is a strong trend of replacing animal trials with alternative methods for the assessment of adverse health effects in humans. The replacement of animal trials is not only driven by ethical concerns but also by the number of potential testing substances (food additives, packaging material, contaminants, and toxicants), which is steadily increasing. In vitro 2D cell culture applications in combination with in silico modeling might provide an applicable first response. However, those systems lack accurate predictions of metabolic actions. Thus, alternative in vivo models could fill the gap between cell culture and animal trials. In this review, we highlight relevant studies in the field and spotlight the applicability of alternative models, including C. elegans, D. rerio, Drosophila, HET-CAM and Lab-on-a-chip.


Assuntos
Caenorhabditis elegans , Substâncias Perigosas , Animais , Simulação por Computador , Alimentos , Humanos
2.
Commun Biol ; 6(1): 1083, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880345

RESUMO

Many bioactive plant compounds, known as phytochemicals, have the potential to improve health. Unfortunately, the bioavailability and bioactivity of phytochemicals such as polyphenolic flavonoids are reduced due to conjugation with sugar moieties. Here, we combine acid hydrolysis and tailored fermentation by lactic acid bacteria (Lactiplantibacillus plantarum) to convert the biologically less active flavonoid glycosides hesperidin and naringin into the more active aglycones hesperetin and naringenin. Using a comprehensive approach, we identify the most effective hydrolysis and fermentation conditions to increase the concentration of the aglycones in citrus extracts. The higher cellular transport and bioactivity of the biotransformed citrus extract are also demonstrated in vitro and in vivo. Superior antioxidant, anti-inflammatory and cell migration activities in vitro, as well as intestinal barrier protecting and antioxidant activities in Drosophila melanogaster are identified. In conclusion, the presented biotransformation approach improves the bioactivity of flavonoids, clearly traced back to the increase in aglycone content.


Assuntos
Citrus , Flavonoides , Animais , Flavonoides/farmacologia , Flavonoides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Hidrólise , Fermentação , Drosophila melanogaster/metabolismo
3.
Mol Nutr Food Res ; 66(12): e2101133, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426970

RESUMO

SCOPE: Sea buckthorn (Hippophaes rhamnoides) is capable of ameliorating disturbed glucose metabolism in animal models and human subjects. Here, the effect of sea buckthorn oil as well as of extracts of fruits, leaves, and press cake on postprandial glucose metabolism is systematically investigated. METHODS AND RESULTS: Sea buckthorn did neither exert decisive effects in an in vitro model of intestinal glucose absorption nor did it alter insulin secretion. However, sea buckthorn stimulates GLUT4 translocation to the plasma membrane comparable to insulin, indicative of increased glucose clearance from the circulation. Isorhamnetin is identified in all sea buckthorn samples investigated and is biologically active in triggering GLUT4 cell surface localization. Consistently, sea buckthorn products lower circulating glucose by ≈10% in a chick embryo model. Moreover, sea buckthorn products fully revert hyperglycemia in the nematode Caenorhabditis elegans while they are ineffective in Drosophila melanogaster under euglycemic conditions. CONCLUSION: These data indicate that edible sea buckthorn products as well as by-products are promising resources for hypoglycemic nutrient supplements that increase cellular glucose clearance into target tissues.


Assuntos
Hippophae , Animais , Embrião de Galinha , Drosophila melanogaster , Frutas , Glucose , Humanos , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas
4.
Food Funct ; 12(21): 10432-10442, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617546

RESUMO

Decreasing circulating low-density lipoprotein (LDL) cholesterol levels leads to decreased risk of cardiovascular diseases. Natural compounds are capable of lowering LDL-cholesterol even on top of lifestyle modification or medication. To identify novel plant-derived compounds to lower plasma LDL cholesterol levels, we performed high-content screening based on the transcriptional activation of the promoter of the LDL receptor (LDLR). The identified hits were thoroughly validated in human hepatic cell lines in terms of increasing LDLR mRNA and protein levels, lowering cellular cholesterol levels and increasing cellular LDL uptake. By means of this incremental validation process in vitro, aqueous extracts prepared from leaves of lingonberries (Vaccinium vitis-idaea) as well as blackberries (Rubus fruticosus) were found to have effects comparable to lovastatin, a prototypic cholesterol-lowering drug. When applied in vivo in mice, both extracts induced subtle increases in hepatic LDLR expression. In addition, a significant increase in high-density lipoprotein (HDL) cholesterol was observed. Taken together, aqueous extracts from lingonberry or blackberry leaves were identified and characterized as strong candidates to provide cardiovascular protection.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Rubus/metabolismo , Vaccinium vitis-Idaea/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA