Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(32): e2310917121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39078681

RESUMO

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.


Assuntos
Variação Antigênica , COVID-19 , Mesocricetus , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/imunologia , COVID-19/virologia , Cricetinae , Variação Antigênica/imunologia , Variação Antigênica/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Antígenos Virais/imunologia , Antígenos Virais/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Soros Imunes/imunologia
2.
PLoS Biol ; 20(11): e3001871, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383605

RESUMO

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Eliminação de Partículas Virais , Anticorpos Bloqueadores
3.
Euro Surveill ; 29(2)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214083

RESUMO

Variant BA.2.86 and its descendant, JN.1, of SARS-CoV-2 are rising in incidence across Europe and globally. We isolated recent JN.1, BA.2.86, EG.5, XBB.1.5 and earlier variants. We tested live virus neutralisation of sera taken in September 2023 from vaccinated and exposed healthy persons (n = 39). We found clear neutralisation escape against recent variants but no specific pronounced escape for BA.2.86 or JN.1. Neutralisation escape corresponds to recent variant predominance but may not be causative of the recent upsurge in JN.1 incidence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Europa (Continente)/epidemiologia , Nível de Saúde , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Mult Scler ; 29(7): 884-888, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36974938

RESUMO

OBJECTIVE: To analyze anti-SARS-CoV-2-S1-IgG levels, avidity, Omicron BA.2 variant neutralizing capacity, and SARS-CoV-2-specific T cells in anti-CD20-treated patients with multiple sclerosis (aCD20pwMS) after two, three, or four COVID-19 vaccinations. RESULTS: Frequencies of aCD20pwMS with detectable SARS-CoV-2-S1-IgG increased moderately between two (31/61 (51%)), three (31/57 (54%)), and four (17/26 (65%)) vaccinations. However, among patients with detectable SARS-CoV-2-S1-IgG, frequencies of high avidity (6/31 (19%) vs 11/17 (65%)) and Omicron neutralizing antibodies (0/10 (0%) vs 6/10 (60%)) increased strongly between two and four vaccinations. SARS-CoV-2-specific T cells were detectable in >92% after two or more vaccinations. CONCLUSION: Additional vaccinations qualitatively improve SARS-CoV-2 antibody responses.


Assuntos
COVID-19 , Esclerose Múltipla , Humanos , Imunidade Humoral , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Vacinação
5.
Lancet Microbe ; 5(6): e538-e546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759669

RESUMO

BACKGROUND: Evolving SARS-CoV-2 variants and changing levels of pre-existing immunity require re-evaluation of antigen-detecting rapid diagnostic test (Ag-RDT) performance. We investigated possible associations between Ag-RDT sensitivity and various potential influencing factors, such as immunisation status and viral variant, in symptomatic hospital employees. METHODS: In this observational study, RT-PCR, Ag-RDT, and symptom-specific data were collected at three SARS-CoV-2 test centres for employees of the Charité-Universitätsmedizin Berlin hospital (Berlin, Germany). Employees reporting SARS-CoV-2-like symptoms, those at an increased risk of infection (eg, due to contact with an infected person), those testing positive in a previous self-administered Ag-RDT, or those seeking release-testing to return to work at least 7 days after a positive RT-PCR test were eligible for combined testing by RT-PCR and Ag-RDT. Only data from individuals with an ongoing SARS-CoV-2 infection as assessed by RT-PCR were used for further analysis. Bayesian regression analyses were done to evaluate possible differences in viral load and Ag-RDT sensitivity according to viral variant and immunisation status (previous vaccination or recovery from infection), using data from first RT-PCR positive samples in an infection. A comprehensive logistic regression analysis was used to investigate potential concomitant associations between Ag-RDT sensitivity and level of pre-existing immunity, time post symptom onset, viral load, gender, age, and Ag-RDT device. Ag-RDT performance was also compared between supernatants from cell cultures infected with the omicron variant of concern (VOC) or the wild-type strain (pre-VOC). FINDINGS: Between Nov 30, 2020 and Feb 11, 2022, a total of 14 773 samples from 7675 employees were tested for SARS-CoV-2 by both RT-PCR and Ag-RDT. We found a negative association between immunisation status and Ag-RDT sensitivity in symptomatic employees, with an observed sensitivity of 82% (94% highest posterior density interval [HPDI] 78-86) in immunologically naive participants compared with 73% (68-78) in multiply immunised individuals (ie, those with at least two vaccinations or recoveries from infection) and median log10 viral loads of 7·02 (IQR 5·83-8·07) and 8·08 (6·80-8·89), respectively. The dominant viral variant changed several times during the study period, from the pre-VOC period (sensitivity 80% [94% HPDI 75-85] in symptomatic participants) through the alpha variant (82% [70-94]), delta variant (75% [69-82]), and omicron variant (72% [65-79]) waves, concomitantly with a steep increase in vaccination coverage in our dataset. In a comparison of Ag-RDT performance on cell culture supernatants, we found no difference between the wild-type and omicron viral variants. INTERPRETATION: On the basis of our findings and data from other studies, we hypothesise that the observed reduction in clinical Ag-RDT sensitivity, despite higher SARS-CoV-2 RNA loads, is due to shorter incubation times later in our study period resulting from increased population immunity or changes in immune response dynamics caused by later SARS-CoV-2 VOCs. FUNDING: Berlin University Alliance, German Ministry of Education and Research, the EU (Projects EU4Health and ReCoVer), and the Berlin Institute of Health.


Assuntos
COVID-19 , SARS-CoV-2 , Carga Viral , Humanos , COVID-19/imunologia , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Adulto , Sensibilidade e Especificidade , Teste Sorológico para COVID-19/métodos , Berlim/epidemiologia , Alemanha/epidemiologia , Antígenos Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA