Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Immunol ; 210(11): 1677-1686, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083696

RESUMO

Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models of MS, which is correlated with a strong localized remyelination response. However, the mechanisms by which hNSC transplantation leads to an increase in Tregs in the CNS remains unclear. We report that hNSCs drive the conversion of T conventional (Tconv) cells into Tregs in vitro. Conversion of Tconv cells is Ag driven and fails to occur in the absence of TCR stimulation by cognate antigenic self-peptides. Furthermore, CNS Ags are sufficient to drive this conversion in the absence of hNSCs in vitro and in vivo. Importantly, only Ags presented in the thymus during T cell selection drive this Treg response. In this study, we investigate the mechanisms by which hNSC Ags drive the conversion of Tconv cells into Tregs and may provide key insight needed for the development of MS therapies.


Assuntos
Esclerose Múltipla , Células-Tronco Neurais , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Esclerose Múltipla/terapia , Ativação Linfocitária , Fatores de Transcrição Forkhead , Antígenos CD4
2.
Neurobiol Dis ; 140: 104868, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276110

RESUMO

Multiple sclerosis (MS) is a chronic, inflammatory autoimmune disease that affects the central nervous system (CNS) for which there is no cure. In MS, encephalitogenic T cells infiltrate the CNS causing demyelination and neuroinflammation; however, little is known about the role of regulatory T cells (Tregs) in CNS tissue repair. Transplantation of neural stem and progenitor cells (NSCs and NPCs) is a promising therapeutic strategy to promote repair through cell replacement, although recent findings suggest transplanted NSCs also instruct endogenous repair mechanisms. We have recently described that dampened neuroinflammation and increased remyelination is correlated with emergence of Tregs following human NPC transplantation in a murine viral model of immune-mediated demyelination. In the current study we utilized the prototypic murine autoimmune model of demyelination experimental autoimmune encephalomyelitis (EAE) to test the efficacy of hNSC transplantation. Eight-week-old, male EAE mice receiving an intraspinal transplant of hNSCs during the chronic phase of disease displayed remyelination, dampened neuroinflammation, and an increase in CNS CD4+CD25+FoxP3+ regulatory T cells (Tregs). Importantly, ablation of Tregs abrogated histopathological improvement. Tregs are essential for maintenance of T cell homeostasis and prevention of autoimmunity, and an emerging role for Tregs in maintenance of tissue homeostasis through interactions with stem and progenitor cells has recently been suggested. The data presented here provide direct evidence for collaboration between CNS Tregs and hNSCs promoting remyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla/terapia , Células-Tronco Neurais/transplante , Remielinização , Linfócitos T Reguladores , Animais , Humanos , Masculino , Camundongos , Bainha de Mielina , Transplante de Células-Tronco
3.
Proc Natl Acad Sci U S A ; 114(7): E1168-E1177, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137846

RESUMO

Disruption of the blood-brain barrier (BBB) is a defining and early feature of multiple sclerosis (MS) that directly damages the central nervous system (CNS), promotes immune cell infiltration, and influences clinical outcomes. There is an urgent need for new therapies to protect and restore BBB function, either by strengthening endothelial tight junctions or suppressing endothelial vesicular transcytosis. Although wingless integrated MMTV (Wnt)/ß-catenin signaling plays an essential role in BBB formation and maintenance in healthy CNS, its role in BBB repair in neurologic diseases such as MS remains unclear. Using a Wnt/ß-catenin reporter mouse and several downstream targets, we demonstrate that the Wnt/ß-catenin pathway is up-regulated in CNS endothelial cells in both human MS and the mouse model experimental autoimmune encephalomyelitis (EAE). Increased Wnt/ß-catenin activity in CNS blood vessels during EAE progression correlates with up-regulation of neuronal Wnt3 expression, as well as breakdown of endothelial cell junctions. Genetic inhibition of the Wnt/ß-catenin pathway in CNS endothelium before disease onset exacerbates the clinical presentation of EAE, CD4+ T-cell infiltration into the CNS, and demyelination by increasing expression of vascular cell adhesion molecule-1 and the transcytosis protein Caveolin-1 and promoting endothelial transcytosis. However, Wnt signaling attenuation does not affect the progressive degradation of tight junction proteins or paracellular BBB leakage. These results suggest that reactivation of Wnt/ß-catenin signaling in CNS vessels during EAE/MS partially restores functional BBB integrity and limits immune cell infiltration into the CNS.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Células Endoteliais/metabolismo , Esclerose Múltipla/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Caveolina 1/metabolismo , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Humanos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/genética , Transcitose , beta Catenina/genética
4.
Dev Dyn ; 248(1): 43-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067309

RESUMO

Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Several United States Food and Drug Administration-approved therapies exist that impede activated lymphocytes from entering the CNS thereby limiting new lesion formation in patients with relapse-remitting forms of MS. However, a significant challenge within the field of MS research is to develop effective and sustained therapies that allow for axonal protection and remyelination. In recent years, there has been increasing evidence that some kinds of stem cells and their derivatives seem to be able to mute neuroinflammation as well as promote remyelination and axonal integrity. Intracranial infection of mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in immune-mediated demyelination and axonopathy, making this an excellent model to interrogate the therapeutic potential of stem cell derivatives in evoking remyelination. This review provides a succinct overview of our recent findings using intraspinal injection of mouse CNS neural progenitor cells and human neural precursors into JHMV-infected mice. JHMV-infected mice receiving these cells display extensive remyelination associated with axonal sparing. In addition, we discuss possible mechanisms associated with sustained clinical recovery. Developmental Dynamics 248:43-52, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Doenças Neurodegenerativas/terapia , Remielinização , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Esclerose Múltipla/terapia , Vírus da Hepatite Murina , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/virologia
5.
Glia ; 67(5): 844-856, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30588668

RESUMO

Alzheimer's disease (AD) is the leading cause of age-related neurodegeneration and is characterized neuropathologically by the accumulation of insoluble beta-amyloid (Aß) peptides. In AD brains, plaque-associated myeloid (PAM) cells cluster around Aß plaques but fail to effectively clear Aß by phagocytosis. PAM cells were originally thought to be brain-resident microglia. However, several studies have also suggested that Aß-induced inflammation causes peripheral monocytes to enter the otherwise immune-privileged brain. The relationship between AD progression and inflammation in the brain remains ambiguous because microglia and monocyte-derived macrophages are extremely difficult to distinguish from one another in an inflamed brain. Whether PAM cells are microglia, peripheral macrophages, or a mixture of both remains unclear. CD11a is a component of the ß2 integrin LFA1. We have determined that CD11a is highly expressed on peripheral immune cells, including macrophages, but is not expressed by mouse microglia. These expression patterns remain consistent in LPS-treated inflamed mice, as well as in two mouse models of AD. Thus, CD11a can be used as a marker to distinguish murine microglia from infiltrating peripheral immune cells. Using CD11a, we show that PAM cells in AD transgenic brains are comprised entirely of microglia. We also demonstrate a novel fluorescence-assisted quantification technique (FAQT), which reveals a significant increase in T lymphocytes, especially in the brains of female AD mice. Our findings support the notion that microglia are the lead myeloid players in AD and that rejuvenating their phagocytic potential may be an important therapeutic strategy.


Assuntos
Doença de Alzheimer/patologia , Antígeno CD11a/metabolismo , Microglia/metabolismo , Microglia/patologia , Células Mieloides/metabolismo , Algoritmos , Doença de Alzheimer/genética , Doença de Alzheimer/cirurgia , Animais , Animais Recém-Nascidos , Transplante de Medula Óssea , Encéfalo/metabolismo , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/etiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Toxoplasmose/complicações
6.
J Immunol ; 197(8): 3049-3058, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27613697

RESUMO

The mammalian target of rapamycin (mTOR) is essential for Th cell proliferation and effector differentiation, making the mTOR signaling network an attractive immunomodulatory target for autoimmune-related diseases. Although direct targeting of mTOR complex-1 (mTORC1) with rapamycin can provide clinical benefit, targeting downstream enzymes has the potential to offer more selective immunosuppression. In this study, we evaluated p70 ribosomal protein S6 Kinase 2 (S6K2), a downstream effector of mTORC1, for its role in T cell function and autoimmunity. S6K2 is a direct substrate of mTORC1, with a potential role in Th17 differentiation suggested by biochemical studies. Using a genetic approach with S6K2 knockout mice, we found that S6K2 loss reduces Th17 skewing and increases regulatory T cell differentiation in vitro when cultured in RPMI 1640 media. However, S6K2 was dispensable for Th17 differentiation in IMDM. In an in vivo experimental autoimmune encephalomyelitis model in which rapamycin suppresses disease, S6K2 knockout mice did not exhibit differences in clinical score or Th17 differentiation. These results suggest that S6K2 is dispensable for Th17-driven autoimmunity and highlight how distinct experimental conditions can produce significantly different results in T cell differentiation.


Assuntos
Doenças Autoimunes/terapia , Fatores Imunológicos/uso terapêutico , Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/metabolismo , Células Th17/imunologia , Animais , Doenças Autoimunes/imunologia , Autoimunidade , Diferenciação Celular , Células Cultivadas , Terapia de Imunossupressão , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Sirolimo/uso terapêutico , Especificidade por Substrato
7.
Semin Immunol ; 26(3): 246-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24856110

RESUMO

Initially discovered as an initiator protease in apoptosis mediated by death receptors, caspase-8 is now known to have an apparently confounding opposing effect in securing cell survival. It is required to allow mouse embryo survival, and the survival of hematopoietic cells during their development and activation. Classic models in which caspase-8 is depleted or inhibited frequently result in inhibition of apoptosis, and conversion to death through a necrotic pathway. This bewildering switch is now known to be driven by activation of a pathway dependent on protein kinases of the RIP family, which engage a pathway known as necroptosis. If caspase-8 does not control this pathway, necrotic death results. The pro-apoptotic and pro-survival functions of caspase-8 are regulated by a specific interaction with the pseudo-caspase cFLIP, and it is thought that the heterocomplex between these two partners alters the substrate specificity of caspase-8 in favor of inactivating components of the RIP kinase pathway. The description of how caspase-8 and cFLIP coordinate the switch between apoptosis and survival is just beginning. The mechanism is not known, the differential targets are not known, and the reason of why an apoptotic initiator has been co-opted as a critical survival factor is only guessed at. Elucidating these unknowns will be important in understanding mechanisms and possible therapeutic targets in autoimmune, inflammatory, and metastatic diseases.


Assuntos
Caspase 8/fisiologia , Animais , Autofagia , Morte Celular , Sobrevivência Celular , Humanos , Transdução de Sinais
8.
Semin Cell Dev Biol ; 35: 33-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25042848

RESUMO

The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Necrose/imunologia , Transdução de Sinais/imunologia , Caspase 8/imunologia , Caspase 8/metabolismo , Humanos , Modelos Imunológicos , Necrose/metabolismo , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
9.
Immunol Rev ; 249(1): 205-17, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22889224

RESUMO

It has long been known that apoptosis is vital to the generation and maintenance of proper adaptive immune function. An example is the essential requirement for apoptotic signaling during the generation of self-tolerant lymphocytes: the apoptotic death of B and T cells with overt autoreactivity is essential to central tolerance. More recently, the contributions of additional processes including cellular autophagy and programmed necrosis have been implicated in controlling both innate and adaptive immune functions. Evidence has been provided to demonstrate that the death of cells following ligation of death receptors (DRs), a subfamily of cell surface molecules related to tumor necrosis factor receptor 1, is not exclusively the domain of caspase-dependent apoptosis. In cells lacking the capacity to activate caspase-8 following DR ligation, cell death instead occurs via programmed necrosis, or as it has been recently termed, 'necroptosis'. This death process depends on RIP1 and RIP3, serine/threonine kinases that are recruited by DRs, and likely by other cellular signals including DNA damage and antigen receptor ligation. The generation of RIP1/RIP3 containing 'necrosomes' activates downstream necroptotic signaling that ultimately targets cellular energetic metabolism. Also related to cellular metabolic regulation, cellular autophagy has also been found to play unique and important roles in immunity. In this review, we describe the roles of necroptosis and autophagy in innate and adaptive immunity and speculate on the intriguing interplay between these two cellular processes.


Assuntos
Imunidade Adaptativa , Apoptose , Autofagia , Imunidade Inata , Necrose , Linfócitos T/fisiologia , Animais , Caspase 8/genética , Caspase 8/metabolismo , Metabolismo Energético , Humanos , Tolerância Imunológica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Morte Celular/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
Stem Cells ; 32(10): 2690-701, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24898518

RESUMO

Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway.


Assuntos
Esclerose Múltipla/patologia , Esclerose Múltipla/virologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citotoxicidade Imunológica/efeitos dos fármacos , Modelos Animais de Doenças , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Vírus da Hepatite Murina/imunologia , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Transplante Homólogo
11.
Proc Natl Acad Sci U S A ; 108(37): 15312-7, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876153

RESUMO

Caspase-8 (casp8) is required for extrinsic apoptosis, and mice deficient in casp8 fail to develop and die in utero while ultimately failing to maintain the proliferation of T cells, B cells, and a host of other cell types. Paradoxically, these failures are not caused by a defect in apoptosis, but by a presumed proliferative function of this protease. Indeed, following mitogenic stimulation, T cells lacking casp8 or its adaptor protein FADD (Fas-associated death domain protein) develop a hyperautophagic morphology, and die a programmed necrosis-like death process termed necroptosis. Recent studies have demonstrated that receptor-interacting protein kinases (RIPKs) RIPK1 and RIPK3 together facilitate TNF-induced necroptosis, but the precise role of RIPKs in the demise of T cells lacking FADD or casp8 activity is unknown. Here we demonstrate that RIPK3 and FADD have opposing and complementary roles in promoting T-cell clonal expansion and homeostasis. We show that the defective proliferation of T cells bearing an interfering form of FADD (FADDdd) is rescued by crossing with RIPK3(-/-) mice, although such rescue ultimately leads to lymphadenopathy. Enhanced recovery of these double-mutant T cells following stimulation demonstrates that FADD, casp8, and RIPK3 are all essential for clonal expansion, contraction, and antiviral responses. Finally, we demonstrate that caspase-mediated cleavage of RIPK1-containing necrosis inducing complexes (necrosomes) is sufficient to prevent necroptosis in the face of death receptor signaling. These studies highlight the "two-faced" nature of casp8 activity, promoting clonal expansion in some situations and apoptotic demise in others.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/virologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Homeostase/imunologia , Imunidade/imunologia , Vírus da Hepatite Murina/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Sobrevivência Celular , Cruzamentos Genéticos , Feminino , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/virologia , Masculino , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência
12.
Immunol Rev ; 236: 95-109, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20636811

RESUMO

Intense research efforts over the last two decades have focused on establishing the significance of apoptotic signaling in adaptive immunity. Without doubt, caspase-dependent apoptosis plays vital roles in many immune processes, including lymphocyte development, positive and negative selection, homeostasis, and self-tolerance. Cell biologists have developed new insights into cell death, establishing that other modes of cell death exist, such as programmed necrosis and type II/autophagic cell death. Additionally, immunologists have identified a number of immunological processes that are highly dependent upon cellular autophagy, including antigen presentation, lymphocyte development and function, pathogen recognition and destruction, and inflammatory regulation. In this review, we provide detailed mechanistic descriptions of cellular autophagy and programmed necrosis induced in response to death receptor ligation, including methods to identify them, and compare and contrast these processes with apoptosis. The crosstalk between these three processes is emphasized as newly formulated evidence suggests that this interplay is vital for efficient T-cell clonal expansion. This new evidence indicates that in addition to apoptosis, autophagy and programmed necrosis play significant roles in the termination of T-cell-dependent immune responses.


Assuntos
Apoptose/imunologia , Autofagia/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Homeostase/imunologia , Humanos , Modelos Imunológicos , Necrose/imunologia
13.
Stem Cells ; 30(11): 2584-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22969049

RESUMO

Transplantation of syngeneic neural progenitor cells (NPCs) into mice persistently infected with the JHM strain of mouse hepatitis virus (JHMV) results in enhanced differentiation into oligodendrocyte progenitor cells that is associated with remyelination, axonal sparing, and clinical improvement. Whether allogeneic NPCs are tolerated or induce immune-mediated rejection is controversial and poorly defined under neuroinflammatory demyelinating conditions. We have used the JHMV-induced demyelination model to evaluate the antigenicity of transplanted allogeneic NPCs within the central nervous system (CNS) of mice with established immune-mediated demyelination. Cultured NPCs constitutively expressed the costimulatory molecules CD80/CD86, and IFN-γ treatment induced expression of MHC class I and II antigens. Injection of allogeneic C57BL/6 NPCs (H-2b background) led to a delayed type hypersensitivity response in BALB/c (H-2d background) mice associated with T-cell proliferation and IFN-γ secretion following coculture with allogeneic NPCs. Transplantation of MHC-mismatched NPCs into JHMV-infected mice resulted in increased transcripts encoding the T-cell chemoattractant chemokines CXCL9 and CXCL10 that correlated with increased T-cell infiltration that was associated with NPC rejection. Treatment of MHC-mismatched mice with T-cell subset-specific depleting antibodies increased survival of allogeneic NPCs without affecting commitment to an oligodendrocyte lineage. Collectively, these results show that allogeneic NPCs are antigenic, and T-cells contribute to rejection following transplantation into an inflamed CNS suggesting that immunomodulatory treatments may be necessary to prolong survival of allogeneic cells.


Assuntos
Doenças Desmielinizantes/terapia , Rejeição de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células-Tronco Neurais/transplante , Medula Espinal/patologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Meios de Cultivo Condicionados , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/imunologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/metabolismo , Medula Espinal/imunologia , Regeneração da Medula Espinal , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
14.
J Immunol ; 186(2): 940-50, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21148796

RESUMO

DRAK2 is a serine/threonine kinase highly enriched in lymphocytes that raises the threshold for T cell activation and maintains T cell survival following productive activation. T cells lacking DRAK2 are prone to activation under suboptimal conditions and exhibit enhanced calcium responses to AgR stimulation. Despite this, mice lacking DRAK2 are resistant to organ-specific autoimmune diseases due to defective autoreactive T cell survival. DRAK2 kinase activity is induced by AgR signaling, and in this study we show that the induction of DRAK2 activity requires Ca(2+) influx through the Ca(2+) release-activated Ca(2+) channel formed from Orai1 subunits. Blockade of DRAK2 activity with the protein kinase D (PKD) inhibitor Gö6976 or expression of a kinase-dead PKD mutant prevented activation of DRAK2, whereas a constitutively active PKD mutant promoted DRAK2 function. Knockdown of PKD in T cells strongly blocked endogenous DRAK2 activation following TCR ligation, implicating PKD as an essential intermediate in the activation of DRAK2 by Ca(2+) influx. Furthermore, we identify DRAK2 as a novel substrate of PKD, and demonstrate that DRAK2 and PKD physically interact under conditions that activate PKD. Mitochondrial generation of reactive oxygen intermediates was necessary and sufficient for DRAK2 activation in response to Ca(2+) influx. Taken together, DRAK2 and PKD form a novel signaling module that controls calcium homeostasis following T cell activation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Sinalização do Cálcio/imunologia , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Proteína Quinase C/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Sinalização do Cálcio/genética , Células Clonais , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Homeostase/genética , Homeostase/imunologia , Humanos , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Linfócitos T/enzimologia , Linfócitos T/imunologia
15.
J Neuroimmunol ; 381: 578133, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352687

RESUMO

Intracranial inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia are the resident immune cell of the central nervous system (CNS) and are considered important in regulating events associated with neuroinflammation as well as influencing both white matter damage and remyelination. To better understand mechanisms by which microglia contribute to these immune-mediated events, JHMV-infected mice with established demyelination were treated with the small molecular inhibitor of colony stimulating factor 1 receptor (CSF1R), PLX5622, to deplete microglia. Treatment with PLX5622 did not affect viral replication within the CNS yet the severity of demyelination was increased and remyelination impaired compared to control mice. Gene expression analysis revealed that targeting microglia resulted in altered expression of genes associated with immune cell activation and phagocytosis of myelin debris. These findings indicate that microglia are not critical in viral surveillance in persistently JHMV-infected mice yet restrict white matter damage and remyelination, in part, by influencing phagocytosis of myelin debris.


Assuntos
Infecções por Coronavirus , Doenças Desmielinizantes , Vírus da Hepatite Murina , Remielinização , Substância Branca , Camundongos , Animais , Microglia/metabolismo , Vírus da Hepatite Murina/fisiologia , Doenças Neuroinflamatórias , Infecções por Coronavirus/complicações , Camundongos Endogâmicos C57BL
16.
EMBO Mol Med ; 15(9): e17748, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37538042

RESUMO

Hematopoietic cell transplantation (HCT) treats many blood conditions but remains underused due to complications such as graft-versus-host disease (GvHD). In GvHD, donor immune cells attack the patient, requiring powerful immunosuppressive drugs like glucocorticoids (GCs) to prevent death. In this study, we tested the hypothesis that donor cell conditioning with the glucocorticoid fluticasone propionate (FLU) prior to transplantation could increase hematopoietic stem cell (HSC) engraftment and reduce GvHD. Murine HSCs treated with FLU had increased HSC engraftment and reduced severity and incidence of GvHD after transplantation into allogeneic hosts. While most T cells died upon FLU treatment, donor T cells repopulated in the hosts and appeared less inflammatory and alloreactive. Regulatory T cells (Tregs) are immunomodulatory and survived FLU treatment, resulting in an increased ratio of Tregs to conventional T cells. Our results implicate an important role for Tregs in maintaining allogeneic tolerance in FLU-treated grafts and suggest a therapeutic strategy of pre-treating donor cells (and not the patients directly) with GCs to simultaneously enhance engraftment and reduce GvHD upon allogeneic HCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Fluticasona/farmacologia , Fluticasona/uso terapêutico , Transplante Homólogo/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/prevenção & controle , Imunossupressores
17.
J Immunol ; 183(1): 285-97, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19542440

RESUMO

Negative regulation of TCR signaling is an important mechanism enforcing immunological self-tolerance to prevent inappropriate activation of T cells and thus the development of autoimmune diseases. The lymphoid-restricted serine/threonine kinase death-associated protein-related apoptotic kinase-2 (DRAK2) raises the TCR activation threshold by targeting TCR-induced calcium mobilization in thymocytes and peripheral T cells and regulates positive thymic selection and peripheral T cell activation. Despite a hypersensitivity of peripheral drak2-deficient T cells, drak2-deficient mice are enigmatically resistant to induced autoimmunity in the model experimental autoimmune encephalomyelitis. To further evaluate the differential role of DRAK2 in central vs peripheral tolerance and to assess its impact on the development of autoimmune diseases, we have generated a transgenic (Tg) mouse strain ectopically expressing DRAK2 via the lck proximal promoter (1017-DRAK2 Tg mice). This transgene led to highest expression levels in double-positive thymocytes that are normally devoid of DRAK2. 1017-DRAK2 Tg mice displayed a reduction of single-positive CD4(+) and CD8(+) thymocytes in context with diminished negative selection in male HY TCR x 1017-DRAK2 Tg mice as well as peripheral T cell hypersensitivity, enhanced susceptibility to experimental autoimmune encephalomyelitis, and spontaneous autoimmunity. These findings suggest that alteration in thymocyte signaling thresholds impacts the sensitivity of peripheral T cell pools.


Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Subpopulações de Linfócitos T/imunologia , Timo/imunologia , Timo/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Células Clonais , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Encefalomielite Autoimune Experimental/patologia , Predisposição Genética para Doença , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Proteínas Serina-Treonina Quinases/deficiência , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Timo/patologia
18.
Proc Natl Acad Sci U S A ; 105(43): 16677-82, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18946037

RESUMO

Fas-associated death domain protein (FADD) and caspase-8 (casp8) are vital intermediaries in apoptotic signaling induced by tumor necrosis factor family ligands. Paradoxically, lymphocytes lacking FADD or casp8 fail to undergo normal clonal expansion following antigen receptor cross-linking and succumb to caspase-independent cell death upon activation. Here we show that T cells lacking FADD or casp8 activity are subject to hyperactive autophagic signaling and subvert a cellular survival mechanism into a potent death process. T cell autophagy, enhanced by mitogenic signaling, recruits casp8 through interaction with FADD:Atg5-Atg12 complexes. Inhibition of autophagic signaling with 3-methyladenine, dominant-negative Vps34, or Atg7 shRNA rescued T cells expressing a dominant-negative FADD protein. The necroptosis inhibitor Nec-1, which blocks receptor interacting protein kinase 1 (RIP kinase 1), also completely rescued T cells lacking FADD or casp8 activity. Thus, while autophagy is necessary for rapid T cell proliferation, our findings suggest that FADD and casp8 form a feedback loop to limit autophagy and prevent this salvage pathway from inducing RIPK1-dependent necroptotic cell death. Thus, linkage of FADD and casp8 to autophagic signaling intermediates is essential for rapid T cell clonal expansion and may normally serve to promote caspase-dependent apoptosis under hyperautophagic conditions, thereby averting necrosis and inflammation in vivo.


Assuntos
Autofagia , Caspase 8/fisiologia , Proliferação de Células , Proteína de Domínio de Morte Associada a Fas/fisiologia , Linfócitos T/citologia , Animais , Apoptose , Caspase 8/genética , Proteína de Domínio de Morte Associada a Fas/genética , Retroalimentação Fisiológica , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Transdução de Sinais/imunologia
19.
J Immunol ; 181(11): 7606-16, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19017949

RESUMO

Clonal expansion of T cells is vital to adaptive immunity, yet this process must be tightly controlled to prevent autoimmune disease. The serine/threonine kinase death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK2) is a negative regulator of TCR signaling and sets the threshold for the activation of naive and memory T cells and selected thymocytes. Despite enhanced T cell activation, Drak2(-/-) mice are resistant to experimental autoimmune encephalomyelitis, an autoimmune demyelinating disease that resembles multiple sclerosis. However, the basis for this autoimmune resistance is currently unknown. In this study, we show that, in the absence of DRAK2 signaling, T cells require greater tonic signaling for maintenance during clonal expansion. Following stimulation, Drak2(-/-) T cells were more sensitive to an intrinsic form of apoptosis that was prevented by CD28 ligation, homeostatic cytokines, or enforced Bcl-x(L) expression. T cell-specific Bcl-x(L) expression also restored the susceptibility of Drak2(-/-) mice to experimental autoimmune encephalomyelitis and enhanced thymic positive selection. These findings demonstrate that DRAK2 is selectively important for T cell survival and highlight the potential that DRAK2 blockade may lead to permanent autoimmune T cell destruction via intrinsic apoptosis pathways.


Assuntos
Apoptose/imunologia , Autoimunidade/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/imunologia , Esclerose Múltipla/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/genética , Autoimunidade/genética , Antígenos CD28/genética , Antígenos CD28/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Citocinas/genética , Citocinas/imunologia , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Memória Imunológica/genética , Memória Imunológica/imunologia , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/genética , Timo/imunologia , Proteína bcl-X/genética , Proteína bcl-X/imunologia
20.
ACS Nano ; 13(6): 6670-6688, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31117376

RESUMO

To dissect therapeutic mechanisms of transplanted stem cells and develop exosome-based nanotherapeutics in treating autoimmune and neurodegenerative diseases, we assessed the effect of exosomes secreted from human mesenchymal stem cells (MSCs) in treating multiple sclerosis using an experimental autoimmune encephalomyelitis (EAE) mouse model. We found that intravenous administration of exosomes produced by MSCs stimulated by IFNγ (IFNγ-Exo) (i) reduced the mean clinical score of EAE mice compared to PBS control, (ii) reduced demyelination, (iii) decreased neuroinflammation, and (iv) upregulated the number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords of EAE mice. Co-culture of IFNγ-Exo with activated peripheral blood mononuclear cells (PBMCs) cells in vitro reduced PBMC proliferation and levels of pro-inflammatory Th1 and Th17 cytokines including IL-6, IL-12p70, IL-17AF, and IL-22 yet increased levels of immunosuppressive cytokine indoleamine 2,3-dioxygenase. IFNγ-Exo could also induce Tregs in vitro in a murine splenocyte culture, likely mediated by a third-party accessory cell type. Further, IFNγ-Exo characterization by deep RNA sequencing suggested that IFNγ-Exo contains anti-inflammatory RNAs, where their inactivation partially hindered the exosomes potential to induce Tregs. Furthermore, we found that IFNγ-Exo harbors multiple anti-inflammatory and neuroprotective proteins. These results not only shed light on stem cell therapeutic mechanisms but also provide evidence that MSC-derived exosomes can potentially serve as cell-free therapies in creating a tolerogenic immune response to treat autoimmune and central nervous system disorders.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Células Cultivadas , Exossomos/metabolismo , Feminino , Humanos , Interferon gama/farmacologia , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA