Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Psychiatry Neurosci ; 48(2): E102-E114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990468

RESUMO

BACKGROUND: Mindfulness-based stress reduction (MBSR) alleviates depression and anxiety in adults with autism spectrum disorder (ASD); however, underlying therapeutic neural mechanisms and mindfulness-specific effects have yet to be elucidated. METHODS: We randomly assigned adults with ASD to MBSR or social support/education (SE). They completed questionnaires that assessed depression, anxiety, mindfulness traits, autistic traits and executive functioning abilities as well as a self-reflection functional MRI task. We used repeated-measures analysis of covariance (ANCOVA) to evaluate behavioural changes. To identify task-specific connectivity changes, we performed a generalized psychophysiological interactions (gPPI) functional connectivity (FC) analysis on regions of interest (ROIs; insula, amygdala, cingulum and prefrontal cortex [PFC]). We used Pearson correlations to explore brain-behaviour relationships. RESULTS: Our final sample included 78 adults with ASD - 39 who received MBSR and 39 who received SE. Mindfulness-based stress reduction uniquely improved executive functioning abilities and increased mindfulness traits, whereas both MBSR and SE groups showed reductions in depression, anxiety and autistic traits. Decreases specific to MBSR in insula-thalamus FC were associated with anxiety reduction and increased mindfulness traits, including the trait "nonjudgment;" MBSR-specific decreases in PFC-posterior cingulate connectivity correlated with improved working memory. Both groups showed decreased amygdala-sensorimotor and medial-lateral PFC connectivity, which corresponded with reduced depression. LIMITATIONS: Larger sample sizes and neuropsychological evaluations are needed to replicate and extend these findings. CONCLUSION: Together, our findings suggest that MBSR and SE are similarly efficacious for depression, anxiety and autistic traits, whereas MBSR produced additional salutary effects related to executive functioning and mindfulness traits. Findings from gPPI identified shared and distinct therapeutic neural mechanisms, implicating the default mode and salience networks. Our results mark an early step toward the development of personalized medicine for psychiatric symptoms in ASD and offer novel neural targets for future neurostimulation research. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04017793.


Assuntos
Transtorno do Espectro Autista , Atenção Plena , Humanos , Adulto , Atenção Plena/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/terapia , Ansiedade/psicologia , Transtornos de Ansiedade , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/terapia , Apoio Social
2.
Cereb Cortex ; 33(2): 316-329, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35212373

RESUMO

The male preponderance in autism spectrum disorder (ASD) led to the hypothesis that aspects of female biology are protective against ASD. Females with ASD (ASD-F) report more compensatory behaviors (i.e. "camouflaging") to overcome ASD-related social differences, which may be a mechanism of protection. No studies have examined sex-related brain pathways supporting camouflaging in ASD-F, despite its potential to inform mechanisms underlying the ASD sex bias. We used functional connectivity (FC) to investigate "sex-atypical" and "sex-typical" FC patterns linked to camouflaging in adults with ASD and examined multimodal coherence of findings via structural connectometry. Exploratory associations with cognitive/emotional functioning examined the adaptive nature of FC patterns. We found (i) "sex-atypical" FC patterns linked to camouflaging in the hypothalamus and precuneus and (ii) "sex-typical" patterns in the right anterior cingulate and anterior parahippocampus. Higher hypothalamic FC with a limbic reward cluster also correlated with better cognitive control/emotion recognition. Structural connectometry validated FC results with consistent brain pathways/effect patterns implicated in ASD-F. In summary, "male-typical" and "female-typical" brain connectivity patterns support camouflaging in ASD-F in circuits implicated in reward, emotion, and memory retrieval. "Sex-atypical" results are consistent with fetal steroidogenic/neuroinflammatory hypotheses. However, female genetics/biology may contribute to "female-typical" patterns implicated in camouflaging.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Masculino , Adulto , Humanos , Feminino , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem
3.
Qual Life Res ; 31(5): 1427-1440, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34655389

RESUMO

PURPOSE: Adults with autism spectrum disorder (ASD) consistently report worse functional health and well-being, compared to neurotypical (NT) peers. In a series of studies, we aimed to elucidated the effects of sex, age, and their interaction on health-related quality of life (HRQoL) and evaluated the effectiveness of mindfulness-based stress reduction (MBSR) for improving health-, disability-, and autism-related QoL, with possible sex and age outcome moderators, in adults with ASD. METHODS: Study 1 used the 36-Item Short Form Survey to compare mental and physical HRQoL composite scores in adults with ASD (n = 67) and matched NT adults (n = 66). Study 2 was a randomized pilot evaluation of the effect of MBSR, compared to an active control intervention with social support and relaxation education (support/education; n = 56), on the World Health Organization QoL BREF, Disability, and Autism-Specific scales in adults with ASD. RESULTS: In Study 1, we replicated findings that mental HRQoL is worse in both men and women with ASD, compared to NT counterparts, but physical HRQoL is only worse in women with ASD. We present novel findings that older age is associated with better mental HRQoL in women with ASD only. In Study 2, MBSR improved disability-related QoL in adults with ASD over and above the support/education intervention, but both interventions improved mental HRQoL. Lastly, both interventions were more effective for HRQoL improvements in women with ASD. CONCLUSION: Findings encourage precision medicine approaches tailored to age and sex groups for best HRQoL outcomes in adults with ASD. CLINICALTRIALS: gov Identifier: NCT04017793.


Assuntos
Transtorno do Espectro Autista , Atenção Plena , Adulto , Transtorno do Espectro Autista/terapia , Feminino , Humanos , Masculino , Projetos Piloto , Qualidade de Vida/psicologia , Apoio Social
4.
Skin Res Technol ; 27(5): 758-765, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33660391

RESUMO

BACKGROUND: The long wear properties of foundations are regarded as a must-have in terms of claims. Here, we propose an instrumental approach based on UV-fluorescence imaging as an alternative to clinical grading methods. METHODS: A method was developed, with UV-fluorescence images captured with the Visia CR as a first step, followed by images analysis using Image-Pro plus. Repeated-measures correlation was used to assess the degree of association between the UV-fluorescence method and a grading method when removing the foundation incrementally from the skin using wipes. Thresholds to ascertain whether a foundation pass or fail long-wearing using the newly developed method were established using a mixed linear model and cross-validated using two subsets of a panel of 20 women. RESULTS: The method could measure incremental removal of foundation using wipes, in a similar fashion to a grading method, as outlined with repeated measures correlation (r = -.86). Pass/fail thresholds established with the mixed linear model were tested versus the grading method when assessing a foundation under real conditions for a duration over 24 hours, with minimal discrepancies between the two methods. CONCLUSION: By capitalising on foundation physical/chemical properties, the proposed method allows to assess their long wear properties, irrespective of basal skin tone or foundation shade. It offers the advantage of appealing visuals for efficacy and to be less resource intensive than a clinical grading approach.


Assuntos
Processamento de Imagem Assistida por Computador , Pele , Feminino , Humanos , Modelos Lineares
5.
BMC Biol ; 18(1): 127, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938453

RESUMO

BACKGROUND: Understanding the genetic modifiers of neurodegenerative diseases can provide insight into the mechanisms underlying these disorders. Here, we examine the relationship between the motor neuron disease spinal muscular atrophy (SMA), which is caused by reduced levels of the survival of motor neuron (SMN) protein, and the actin-bundling protein Plastin 3 (PLS3). Increased PLS3 levels suppress symptoms in a subset of SMA patients and ameliorate defects in SMA disease models, but the functional connection between PLS3 and SMN is poorly understood. RESULTS: We provide immunohistochemical and biochemical evidence for large protein complexes localized in vertebrate motor neuron processes that contain PLS3, SMN, and members of the hnRNP F/H family of proteins. Using a Caenorhabditis elegans (C. elegans) SMA model, we determine that overexpression of PLS3 or loss of the C. elegans hnRNP F/H ortholog SYM-2 enhances endocytic function and ameliorates neuromuscular defects caused by decreased SMN-1 levels. Furthermore, either increasing PLS3 or decreasing SYM-2 levels suppresses defects in a C. elegans ALS model. CONCLUSIONS: We propose that hnRNP F/H act in the same protein complex as PLS3 and SMN and that the function of this complex is critical for endocytic pathways, suggesting that hnRNP F/H proteins could be potential targets for therapy development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Atrofia Muscular Espinal/genética , Proteínas de Ligação a RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Animais Geneticamente Modificados/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Endocitose/genética , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
6.
J Neurosci Res ; 98(6): 1150-1161, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32090389

RESUMO

Adults with autism spectrum disorder (ASD) experience high rates of depression and anxiety, and some evidence suggests mindfulness-based stress reduction (MBSR) is effective in reducing these symptoms. However, the neural mechanisms of symptom alleviation, and benefit of MBSR beyond education/support groups are unknown. Maladaptive forms of self-reflection are linked to ASD, depression, and anxiety. In this pilot study, we hypothesized (a) MBSR would reduce depression and anxiety in adults with ASD and (b) a mechanism of symptom alleviation would be increased blood oxygen level-dependent signal in neural self-reflection hubs. Twenty-eight adults were randomly assigned to an 8-week MBSR group (n = 15) or a support group (n = 13) that met for the same amount of time with relaxation education materials. Based on previous self-reflection literature in ASD, regions of interest (ROIs) were middle cingulate cortex (MCC) and ventromedial prefrontal cortex (vmPFC). Only the MBSR group demonstrated significant reductions in depression, and neither group significantly changed in anxiety. Only the MBSR group increased activity of right MCC during self-reflection, and the increase correlated with depression alleviation. There were no changes in vmPFC for the MBSR group or either ROI for the support/education group. Seed-to-voxel connectivity analysis revealed that only the MBSR group increased functional connectivity between right MCC and pre/postcentral gyrus, suggesting MBSR may increase primary sensorimotor input to higher order cognitive brain regions. Taken together, MBSR may be effective for reducing depression in adults with ASD, and the neural mechanism may be increasing frontal circuit involvement during self-directed thought.


Assuntos
Transtorno do Espectro Autista/complicações , Encéfalo/diagnóstico por imagem , Transtorno Depressivo/terapia , Atenção Plena/métodos , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Transtorno Depressivo/complicações , Transtorno Depressivo/diagnóstico por imagem , Transtorno Depressivo/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
7.
Skin Res Technol ; 26(2): 209-214, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31560408

RESUMO

BACKGROUND: As the eye contour ages, the skin on the lid becomes lax often causing a voluminous protrusion where the superior palpebral sulcus begins to sag onto the upper eyelid. This sagging feature may present a novel anti-ageing target for cosmetic products when treating the eye area. A quantitative method to evaluate the volume of this sagging feature has not been previously established. We investigate the use of the DermaTOP fringe projector and Antera 3D Camera to this end. METHODS: Eyelid topographic measurements were collected on 20 female volunteers aged 50-75 years with the DermaTOP and Antera 3D. The DermaTOP and Antera 3D measurements were assessed for reproducibility and product effect detection capabilities. RESULTS: The DermaTOP and Antera 3D successfully measured sagging feature volume, demonstrated reproducibility of measurement and furthermore were suitably sensitive to allow for detection of sagging feature volume reduction after a single application of aqueous tightening serum. DermaTOP parameters were found to moderately correlated with the Antera 3D parameters. CONCLUSION: Both the DermaTOP and Antera 3D allow for quantitative measurement of eyelid sagging feature volume and in-turn permit evaluation of anti-ageing cosmetic preparations targeting the eyelid.


Assuntos
Cosméticos/farmacologia , Pálpebras , Prednisolona/análogos & derivados , Pele , Administração Tópica , Idoso , Pálpebras/diagnóstico por imagem , Pálpebras/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Fotografação , Prednisolona/administração & dosagem , Prednisolona/química , Pele/diagnóstico por imagem , Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia
8.
Lancet ; 391(10120): 563-571, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29217375

RESUMO

BACKGROUND: A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings. METHODS: We did three phase 1, placebo-controlled, double-blind trials of ZPIV with aluminium hydroxide adjuvant. In all three studies, healthy adults were randomly assigned by a computer-generated list to receive 5 µg ZPIV or saline placebo, in a ratio of 4:1 at Walter Reed Army Institute of Research, Silver Spring, MD, USA, or of 5:1 at Saint Louis University, Saint Louis, MO, USA, and Beth Israel Deaconess Medical Center, Boston, MA, USA. Vaccinations were given intramuscularly on days 1 and 29. The primary objective was safety and immunogenicity of the ZPIV candidate. We recorded adverse events and Zika virus envelope microneutralisation titres up to day 57. These trials are registered at ClinicalTrials.gov, numbers NCT02963909, NCT02952833, and NCT02937233. FINDINGS: We enrolled 68 participants between Nov 7, 2016, and Jan 25, 2017. One was excluded and 67 participants received two injections of Zika vaccine (n=55) or placebo (n=12). The vaccine caused only mild to moderate adverse events. The most frequent local effects were pain (n=40 [60%]) or tenderness (n=32 [47%]) at the injection site, and the most frequent systemic reactogenic events were fatigue (29 [43%]), headache (26 [39%]), and malaise (15 [22%]). By day 57, 52 (92%) of vaccine recipients had seroconverted (microneutralisation titre ≥1:10), with peak geometric mean titres seen at day 43 and exceeding protective thresholds seen in animal studies. INTERPRETATION: The ZPIV candidate was well tolerated and elicited robust neutralising antibody titres in healthy adults. FUNDING: Departments of the Army and Defense and National Institute of Allergy and Infectious Diseases.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Zika virus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Método Duplo-Cego , Humanos
9.
BMC Neurosci ; 19(1): 10, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523076

RESUMO

BACKGROUND: Sleep deprivation impairs learning, causes stress, and can lead to death. Notch and JNK-1 pathways impact C. elegans sleep in complex ways; these have been hypothesized to involve compensatory sleep. C. elegans DAF-16, a FoxO transcription factor, is required for homeostatic response to decreased sleep and DAF-16 loss decreases survival after sleep bout deprivation. Here, we investigate connections between these pathways and the requirement for sleep after mechanical stress. RESULTS: Reduced function of Notch ligand LAG-2 or JNK-1 kinase resulted in increased time in sleep bouts during development. These animals were inappropriately easy to arouse using sensory stimulation, but only during sleep bouts. This constellation of defects suggested that poor quality sleep bouts in these animals might activate homeostatic mechanisms, driving compensatory increased sleep bouts. Testing this hypothesis, we found that DAF-16 FoxO function was required for increased sleep bouts in animals with defective lag-2 and jnk-1, as loss of daf-16 reduced sleep bouts back to normal levels. However, loss of daf-16 did not suppress arousal thresholds defects. Where DAF-16 function was required differed; in lag-2 and jnk-1 animals, daf-16 function was required in neurons or muscles, respectively, suggesting that disparate tissues can drive a coordinated response to sleep need. Sleep deprivation due to mechanical stimulation can cause death in many species, including C. elegans, suggesting that sleep is essential. We found that loss of sleep bouts in C. elegans due to genetic manipulation did not impact their survival, even in animals lacking DAF-16 function. However, we found that sleep bout deprivation was often fatal when combined with the concurrent stress of mechanical stimulation. CONCLUSIONS: Together, these results in C. elegans confirm that Notch and JNK-1 signaling are required to achieve normal sleep depth, suggest that DAF-16 is required for increased sleep bouts when signaling decreases, and that failure to enter sleep bouts is not sufficient to cause death in C. elegans, unless paired with concurrent mechanical stress. These results suggest that mechanical stress may directly contribute to death observed in previous studies of sleep deprivation and/or that sleep bouts have a uniquely restorative role in C. elegans sleep.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sono/genética , Sono/fisiologia , Animais , Caenorhabditis elegans , Fatores de Transcrição Forkhead/genética , Homeostase/fisiologia , Insulina/metabolismo , Transdução de Sinais/fisiologia
10.
J Neurosci ; 35(41): 14070-5, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468206

RESUMO

Arc ensembles in adult rat olfactory bulb (OB) and anterior piriform cortex (PC) were assessed after discrimination training on highly similar odor pairs. Nonselective α- and ß-adrenergic antagonists or saline were infused in the OB or anterior PC during training. OB adrenergic blockade slowed, but did not prevent, odor discrimination learning. After criterion performance, Arc ensembles in anterior piriform showed enhanced stability for the rewarded odor and pattern separation for the discriminated odors as described previously. Anterior piriform adrenergic blockade prevented acquisition of similar odor discrimination and of OB ensemble changes, even with extended overtraining. Mitral and granule cell Arc ensembles in OB showed enhanced stability for rewarded odor only in the saline group. Pattern separation was not seen in the OB. Similar odor discrimination co-occurs with increased stability in rewarded odor representations and pattern separation to reduce encoding overlap. The difficulty of similar discriminations may relate to the necessity to both strengthen rewarded representations and weaken overlap across similar representations. SIGNIFICANCE STATEMENT: We show for the first time that adrenoceptors in anterior piriform cortex (aPC) must be engaged for adult rats to learn to discriminate highly similar odors. Loss of adrenergic activation in olfactory bulb (OB) slows, but does not prevent, discrimination learning. Both increased stability of the rewarded odor representation and increased pattern separation of the rewarded and unrewarded odors in aPC accompany successful discrimination. In the OB, rewarded odors increase in ensemble stability, but there is no evidence of pattern separation. We suggest that the slow acquisition of similar odor discriminations is related to the differing plasticity requirements for increased stability and pattern separation.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Aprendizagem por Discriminação/fisiologia , Epinefrina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Córtex Piriforme/citologia , Células Receptoras Sensoriais/metabolismo , Antagonistas Adrenérgicos/farmacologia , Animais , Aprendizagem por Discriminação/efeitos dos fármacos , Feminino , Masculino , Odorantes , Ratos , Ratos Sprague-Dawley , Recompensa , Células Receptoras Sensoriais/classificação
11.
Proc Biol Sci ; 283(1823)2016 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-26817775

RESUMO

Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. 'within-generation' plasticity), such 'transgenerational plasticity' (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations.


Assuntos
Adaptação Fisiológica , Daphnia/fisiologia , Peixes/fisiologia , Comportamento Predatório , Migração Animal , Animais , Connecticut , Ecossistema , Lagos , Estações do Ano , Fatores de Tempo , Zooplâncton
12.
Biomacromolecules ; 17(5): 1845-53, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27007744

RESUMO

The constituent nanofibrils of bacterial cellulose are of interest to many researchers because of their purity and excellent mechanical properties. Mechanisms to disrupt the network structure of bacterial cellulose (BC) to isolate bacterial cellulose nanofibrils (BCN) are limited. This work focuses on liquid-phase dispersions of BCN in a range of organic solvents. It builds on work to disperse similarly intractable nanomaterials, such as single-walled carbon nanotubes, where optimum dispersion is seen for solvents whose surface energies are close to the surface energy of the nanomaterial; bacterial cellulose is shown to disperse in a similar fashion. Inverse gas chromatography was used to determine the surface energy of bacterial cellulose, under relevant conditions, by quantifying the surface heterogeneity of the material as a function of coverage. Films of pure BCN were prepared from dispersions in a range of solvents; the extent of BCN exfoliation is shown to have a strong effect on the mechanical properties of BC films and to fit models based on the volumetric density of nanofibril junctions. Such control offers new routes to producing robust cellulose films of bacterial cellulose nanofibrils.


Assuntos
Bactérias/metabolismo , Celulose/química , Celulose/metabolismo , Nanoestruturas/química , Nanotubos de Carbono/química , Propriedades de Superfície
13.
J Anim Ecol ; 83(6): 1279-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24810960

RESUMO

The evolutionary theory of senescence predicts that increased rates of extrinsic mortality select for faster declines in fertility and survival with age. One predicted mechanism is that increased mortality favours alleles that enhance fitness early in life at the expense of survival or reproduction later in life (antagonistic pleiotropy). We tested these predictions in natural populations of Daphnia ambigua from lakes that vary in the severity and duration of fish predation. Daphnia are found in lakes with (i) anadromous alewife (Alosa pseudoharengus) that migrate between marine and freshwater, (ii) permanent landlocked alewife and (iii) no alewife. Daphnia are rare year-round in 'landlocked lakes' and are seasonally eliminated from the water column in 'anadromous lakes' due to the very strong predatory impact of anadromous alewife on populations of zooplankton. Previous work has also shown that intense seasonal bouts of predation by anadromous alewife has selected for increased allocation towards growth and reproduction in Daphnia found in lakes with anadromous alewife. Such variation in the risk of mortality and the expression of life-history traits early in life provides the raw materials to test the evolutionary theory of ageing. We reared replicate populations of Daphnia from all three lake types and quantified lifetime rates of offspring production and intrinsic survival. We found no differences in age-related declines in fertility or survival. Daphnia from anadromous lakes produced significantly more offspring throughout their lifetime despite no differences in life span or in the number of reproductive bouts compared with Daphnia from lakes with landlocked and no alewife. The lack of divergence in ageing contradicts the prediction that elevated mortality rates drive evolutionary shifts in ageing. We reconcile these results by considering the predictions of theoretical frameworks that incorporate feedbacks associated with increased mortality such as density- and condition-dependent processes. Our results, which are better explained by a consideration of these processes, thus call for a greater consideration of models that more explicitly consider the ecology of focal organisms.


Assuntos
Envelhecimento , Daphnia/fisiologia , Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório , Animais , Evolução Biológica , Connecticut , Fertilidade , Lagos , Longevidade , Seleção Genética
14.
Front Med (Lausanne) ; 11: 1370916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966540

RESUMO

Introduction: The conect4children (c4c) project aims to facilitate efficient planning and delivery of paediatric clinical trials. One objective of c4c is data standardization and reuse. Interoperability and reusability of paediatric clinical trial data is challenging due to a lack of standardization. The Clinical Data Interchange Standards Consortium (CDISC) standards that are required or recommended for regulatory submissions in several countries lack paediatric specificity with limited awareness within academic institutions. To address this, c4c and CDISC collaborated to develop the Pediatrics User Guide (PUG) consisting of cross-cutting data items that are routinely collected in paediatric clinical trials, factoring in all paediatric age ranges. Methods and Results: The development of the PUG consisted of six stages. During the scoping phase, subtopics (each containing several clinically relevant concepts) were suggested and debated for inclusion in the PUG. Ninety concepts were selected for the modelling phase. Concept maps describing the Research Topic and representation procedure were developed for the 19 concepts that had no (or partial) previous modelling in CDISC. Next, metadata and implementation examples were developed for concepts. This was followed by a CDISC internal review and a public review. For both these review stages, the feedback comments were either implemented or rejected based on budget, timelines, expert review, and scope. The PUG was published on the CDISC website on February 23, 2023. Discussion: The PUG is a first step in bridging the lack of child specific CDISC standards, particularly within academia. Several academic and industrial partners were involved in the development of the PUG, and c4c has undertaken multiple steps to publicize the PUG within its academic partner organizations - in particular, the European Reference Networks (ERNs) that are developing registries and dictionaries in 24 disease areas. In the long term, continued use of the PUG in paediatric clinical trials will enable the pooling of data from multiple trials, which is particularly important for medical domains with small populations.

15.
PLoS Genet ; 6(10): e1001172, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21124729

RESUMO

Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Invertebrados/genética , Interferência de RNA , Proteínas do Complexo SMN/genética , Análise de Variância , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Evolução Molecular , Feminino , Genoma Helmíntico/genética , Genoma de Inseto/genética , Humanos , Invertebrados/crescimento & desenvolvimento , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Mutação , Pupa/genética , Pupa/crescimento & desenvolvimento , Proteínas do Complexo SMN/fisiologia
16.
Trials ; 24(1): 150, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855177

RESUMO

BACKGROUND: The perimenopausal transition is accompanied by psychiatric symptoms in over 10% of women. Symptoms commonly include depressed mood and anhedonia and less commonly include psychosis. Psychiatric symptoms have been linked to the depletion and/or variability of circulating estradiol, and estradiol treatment reduces perimenopausal anhedonia and psychosis in some women. Estrogen fluctuations may disrupt function in the mesolimbic reward system in some women, leading to psychiatric symptoms like anhedonia or psychosis. The Perimenopausal Effects of Estradiol on Anhedonia and Psychosis Study (PEEPs) is a mechanistic clinical trial that aims to (1) identify relationships between perimenopausal-onset anhedonia and psychosis and neuromolecular markers of mesolimbic reward responses and (2) determine the extent to which estradiol treatment-induced changes in mesolimbic reward responses are associated with alleviation of perimenopausal onset anhedonia or psychosis. METHODS: This study will recruit 100 unmedicated women ages 44-55 in the late-stage perimenopausal transition, sampling across the range of mild-to-high anhedonia and absent-to-moderate psychosis symptoms. Patients will be randomized to receive either estradiol or placebo treatment for 3 weeks. Clinical outcome measures will include symptoms of anhedonia (measured with Snaith-Hamilton Pleasure Scale; SHAPS) and psychosis (measured with Brief Psychiatric Rating Scale; BPRS psychosis subscale) as well as neural markers of mesolimbic reward system functioning, including reward-related fMRI activation and PET-derived measure of striatal dopamine binding. Pre-treatment associations between (1) SHAPS/BPRS scores and (2) reward-related striatal dopamine binding/BOLD activation will be examined. Furthermore, longitudinal mixed models will be used to estimate (1) symptom and neuromolecular trajectories as a function of estradiol vs. placebo treatment and (2) how changes in reward-related striatal dopamine binding and BOLD activation predict variability in symptom trajectories in response to estradiol treatment. DISCUSSION: This clinical trial will be the first to characterize neural and molecular mechanisms by which estradiol treatment ameliorates anhedonia and psychosis symptoms during the perimenopausal transition, thus laying the groundwork for future biomarker research to predict susceptibility and prognosis and develop targeted treatments for perimenopausal psychiatric symptoms. Furthermore, in alignment with the National Institute for Mental Health Research Domain Criteria initiative, this trial will improve our understanding of a range of disorders characterized by anhedonia, psychosis, and reward system dysfunction. TRIAL REGISTRATION: ClinicalTrials.gov NCT05282277.


Assuntos
Estradiol , Transtornos Psicóticos , Feminino , Humanos , Estradiol/uso terapêutico , Anedonia , Dopamina , Perimenopausa , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Front Aging Neurosci ; 14: 1029166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437999

RESUMO

Research aimed at understanding cognitive and brain aging in adults with autism spectrum disorder (ASD) is growing, but critical longitudinal work is scant. Adults with ASD struggle with tasks involving visual memory compared with neurotypical adults (NT). This may be related to differences in size or integrity of the hippocampus and its' primary structural connectivity pathway, the fornix. The aim of this study was to describe preliminary findings of longitudinal aging trajectories in short- and long-term visual memory abilities in middle-age and older adults with ASD, compared with matched NT adults. We then evaluated baseline multi-modal imaging metrics of the hippocampal system, including the relatively novel metric of free-water, as potential correlates of longitudinal memory change in the ASD group. Middle-age and older adults with ASD (n = 25) and matched NT adults (n = 25) between the ages of 40 and 70 years were followed longitudinally at ~2-year intervals (range 2-5 years). Participants completed the Wechsler Memory Scale III Visual Reproduction task. Longitudinal mixed models were utilized to detect group differences in memory change with baseline age and sex as covariates. Hippocampal volume was measured via T1-weighted MRI images with FreeSurfer. Fornix fractional anisotropy and hippocampal and fornix free-water were measured from diffusion tensor imaging scans. Exploratory correlations were run between individual hippocampal system metrics and longitudinal slopes of visual memory change. There was a significant group by time interaction for long-term visual memory, such that middle-age and older adults with ASD declined faster than matched NT adults. There was no group by time interaction for short-term visual memory. Baseline hippocampal free-water was the only hippocampal system metric that correlated with long-term visual memory change in the ASD group. As one of the first longitudinal cognitive and brain aging studies in middle-age and older adults with ASD, our findings suggest vulnerabilities for accelerated long-term visual memory decline, compared to matched NT adults. Further, baseline hippocampal free-water may be a predictor of visual memory change in middle-age and older adults with ASD. These preliminary findings lay the groundwork for future prognostic applications of MRI for cognitive aging in middle-age and older adults with ASD.

18.
Autism Res ; 15(10): 1810-1823, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36053945

RESUMO

Research studying aging in adults with autism spectrum disorder (ASD) is growing, but longitudinal work is needed. Autistic adults have increased risk of dementia, altered hippocampal volumes and fornix integrity, and verbal memory difficulties compared with neurotypical (NT) adults. This study examined longitudinal aging in middle-age adults with ASD versus a matched NT group, and compared findings with cross-sectional age effects across a broad adult age range. Participants were 194 adults with (n = 106; 74 male) and without (n = 88; 52 male) ASD, ages 18-71. Participants (n = 45; 40-70 age range) with two visits (2-3 years apart) were included in a longitudinal analysis. Hippocampal volume, fornix fractional anisotropy (FA), and verbal memory were measured via T1-weighted MRI, diffusion tensor imaging, and the Rey Auditory Verbal Learning Test, respectively. Longitudinal mixed models were used for hippocampal system variables and reliable change index categories were used for Auditory Verbal Learning Test analyses. Multivariate regression was used for cross-sectional analyses. Middle-age adults with ASD had greater longitudinal hippocampal volume loss and were more likely to show clinically meaningful decline in short-term memory, compared with NT. In contrast, cross-sectional associations between increasing age and worsening short-term memory were identified in NT, but not autistic adults. Reduced fornix FA and long-term memory in ASD were found across the broad cross-sectional age range. These preliminary longitudinal findings suggest accelerated hippocampal volume loss in ASD and slightly higher rates of clinically-meaningful decline in verbal short-term memory. Contradictory cross-sectional and longitudinal results underscore the importance of longitudinal aging research in autistic adults. LAY SUMMARY: Autistic adults have increased risk of dementia, differences in brain memory structures, and difficulty with memory compared with neurotypical (NT) adults. However, there are no publications that follow the same middle-age autistic adults over time to see how their brain and memory change. Our preliminary findings in a small middle-age autism sample suggest a key memory brain structure, the hippocampus, may shrink faster over 2-3 years compared with NT, and short-term memory may become more challenging for some. Across a broad adult range, autistic adults also had reduced integrity of connections to the hippocampus and greater challenges with long-term memory. In our larger sample across a broad age range, the results did not hint at this aforementioned pattern of accelerated aging. This underscores the importance of more aging research in autism, and especially research where people are followed over time.


Assuntos
Transtorno do Espectro Autista , Demência , Adolescente , Adulto , Idoso , Transtorno do Espectro Autista/complicações , Pré-Escolar , Estudos Transversais , Imagem de Tensor de Difusão , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
19.
Neuroimage Clin ; 31: 102719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34153690

RESUMO

Females with autism spectrum disorder (ASD) have been long overlooked in neuroscience research, but emerging evidence suggests they show distinct phenotypic trajectories and age-related brain differences. Sex-related biological factors (e.g., hormones, genes) may play a role in ASD etiology and have been shown to influence neurodevelopmental trajectories. Thus, a lifespan approach is warranted to understand brain-based sex differences in ASD. This systematic review on MRI-based sex differences in ASD was conducted to elucidate variations across the lifespan and inform biomarker discovery of ASD in females We identified articles through two database searches. Fifty studies met criteria and underwent integrative review. We found that regions expressing replicable sex-by-diagnosis differences across studies overlapped with regions showing sex differences in neurotypical cohorts. Furthermore, studies investigating age-related brain differences across a broad age-span suggest distinct neurodevelopmental patterns in females with ASD. Qualitative comparison across youth and adult studies also supported this hypothesis. However, many studies collapsed across age, which may mask differences. Furthermore, accumulating evidence supports the female protective effect in ASD, although only one study examined brain circuits implicated in "protection." When synthesized with the broader literature, brain-based sex differences in ASD may come from various sources, including genetic and endocrine processes involved in brain "masculinization" and "feminization" across early development, puberty, and other lifespan windows of hormonal transition. Furthermore, sex-related biology may interact with peripheral processes, in particular the stress axis and brain arousal system, to produce distinct neurodevelopmental patterns in males and females with ASD. Future research on neuroimaging-based sex differences in ASD would benefit from a lifespan approach in well-controlled and multivariate studies. Possible relationships between behavior, sex hormones, and brain development in ASD remain largely unexamined.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Longevidade , Masculino , Caracteres Sexuais
20.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34128835

RESUMO

Macrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of ß cells and the subsequent development of hyperglycemia. The depletion or inhibition of 12-LOX in this model resulted in reduced macrophage infiltration into islets and the preservation of ß cell mass. In NOD mice, the deletion of the gene encoding 12-LOX in the myeloid lineage resulted in reduced insulitis with reductions in proinflammatory macrophages, a suppressed T cell response, preserved ß cell mass, and almost complete protection from the development of T1D. 12-LOX depletion caused a defect in myeloid cell migration, a function required for immune surveillance and tissue injury responses. This effect on migration resulted from the loss of the chemokine receptor CXCR3. Transgenic expression of the gene encoding CXCR3 rescued the migratory defect in zebrafish 12-LOX morphants. Taken together, our results reveal a formative role for innate immune cells in the early pathogenesis of T1D and identify 12-LOX as an enzyme required to promote their prodiabetogenic phenotype in the context of autoimmunity.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Receptores CXCR3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/imunologia , Masculino , Camundongos , Cultura Primária de Células , Receptores CXCR3/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA