Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 80(9): 1662-1672, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32039898

RESUMO

Trace elements play a critical role for microbial activity in anaerobic digestion (AD) but their effects were probably overestimated in batch tests and should be comparably evaluated in continuous systems. In this study, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ were added in different concentrations to manure wastewater, and the effects were compared in both batch and continuous systems. The results were used to demonstrate suitable trace element compositions for AD of dairy and swine wastewater, and to compare the outcomes from batch and continuous systems. Fe2+ and Zn2+ were identified as being the most efficient stimulant of dairy and swine wastewater respectively. The addition of 5 mg/L Fe2+ and 0.4 mg/L Zn2+ increased the batch specific methane yield by 62% and 126% for dairy and swine wastewater, respectively. Nevertheless, a lower increment of 2% and 21%, for dairy and swine wastewater was obtained in the 120-day continuously-fed experiments. The 16S rRNA gene sequencing results indicated a relationship between the methanogens population, specific methanogenic activities, propionate, and dissolved hydrogen. Conclusively, the addition of a low dosage of Fe2+ and Zn2+ is a feasible strategy to enhance the methanogenic metabolism of the AD of dairy and swine wastewater respectively.


Assuntos
Oligoelementos , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos , Esterco , Metano , RNA Ribossômico 16S , Suínos
2.
Heliyon ; 8(9): e10580, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36148270

RESUMO

In Kenya, 57% of the municipal solid waste generated is Food waste (FW) which has high organic content. However, the treatment and bioconversion of FW to biogas have always been challenging due to its rapid biodegradation, resulting from rapid hydrolysis and accumulation of volatile fatty acids and lowering pH in the bioreactor. In this study, the anaerobic digestibility of FW as a mono substrate was compared to co-digestion of FW with water hyacinth (WH) for improved biogas production and organic matter removal efficiency in a laboratory batch reactor. Different mix proportions of FW and WH were co-digested under mesophilic conditions (37 °C) at a dilution of 6% (w/v) Total Solids (TS) content. The TS of the substrates (Food waste and Water Hyacinth) were pre-processed to have a concentration of TS at 6% (60 g/L) to operate a wet AD which requires the substrate to be less than 15% TS. The proportions of WH: FW (v/v) were 100:0, 85:15, 70:30, 55:45, 30:70, 15:85, and 0:100. In the batch rectors the anaerobic co-digestion was conducted with Substrate to Inoculum (S/I) ratio of 1:1. FW is generally considered to have high volatile solids which hydrolyze rapidly lowering pH arising from excess production of Hydrogen which in presence of CO2 and acetogenic bacteria leads to more production of acetate, formate and other long chain fatty acids which inhibits methanogenesis as a result of rapid acidification. The rapid acidification of the bioreactors that are used to treat FW results in the inhibition of the methanogenesis process. The co-digestion of the substrates could have improved the process parameters by reducing acidity caused by the high C/N ratio, reducing the inhibitory range, and increasing the buffer capacity which enhanced the bio-methane potential and the microbial activity. The batch experiments were set in triplicate for both cases of FW, WH, mixtures, and Inoculum. The results showed that the average gas yields after 81 days for the various mix proportions were 256.27and 357.69 ml/g-VS for mono-digestion of WH and FW respectively. For the mixtures of WH: FW the average reported biogas production were 305.01, 280.27, 548.91,616.01 and 270.87 ml/g-VS for mixtures of 15:85, 30:70, 55:45,70:30 and 85:15 respectively. The modified Gompertz model showed that the digesters with WH and FW alone had lag times of 2.599 and 1.052 days respectively. The mix substrates of WH: FW 85:15, 70:30, 55:45, 30:70 and 15:85 shown lag times of 2.456, 3.777, 2.574, 1.956 and 1.75 days respectively. A mix (WH: FW) of 70:30 had the highest maximum specific biogas production Rmax and the maximum biogas production potential of 18.19 mlCH4/gVS per day and 607.7mlCH4/gVS respectively. The R2 and RSME values ranged from 0.9867 to 0.9963 and 2.663 to 9.359 respectively in all the digesters. The study shows that the co-digestion of WH and FW in the mix ratio of 70:30 improved the volume of biogas produced and organic matter removal efficiency reached 79%.

3.
Heliyon ; 7(11): e08458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888424

RESUMO

Enrichment of water bodies with nutrients from wastewater is one of the causes of eutrophication to aquatic ecosystems. This study investigated the use of biochar derived from rice husk, coconut husk, and coffee husk in adsorbing nitrates (NO3-N) and nitrites (NO2-N) from slaughterhouse wastewater. It also explored the desorption efficiencies of the adsorbed nutrients to ascertain the applicability of the enriched biochars as slow-release fertilizers. To characterize the physicochemical properties of the biochars, scanning electron microscopy (SEM) was used. Fourier transforms infrared spectroscopy (FTIR), elemental analysis (CHNO) Langmuir and Freundlich, and the isotherm models were employed to fit the experimental equilibrium adsorption data. It was observed that the Langmuir isotherm model has the best fit of NO3- N and NO2- N on all the biochars. And this was based on the coefficient of correlation values. Also, the coconut husk biochar has the highest adsorption capacities of NO3-N and NO2-N at 12.97 mg/g, and 0.244 mg/g, respectively, attributing to its high porosity as revealed by the SEM images. The adsorption capacities for the rice husk char were 12.315 and 0.233 mg/g, while that for coffee husk char were12.08 mg/g and 0.218 mg/g for NO3-N and NO2-N, respectively. The relatively higher amount of NO3-N adsorbed to that of NO2-N could be attributed to its higher initial concentration in the solution than nitrite concentration. The desorption efficiencies of nitrates were 22.4, 24.39, and 16.79 %, for rice husk char, coconut husk char and coffee husk char, respectively. For the rice husk char, coconut husk char and coffee husk char, the nitrites desorption efficiencies were 80.73, 91.39, and 83.62 %, respectively. These values are good indicators that the studied biochar can be enriched with NO3- N and NO2- N and used as slow-release fertilizers.

4.
Sci Total Environ ; 699: 134373, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31677470

RESUMO

This study evaluated the influence of hyper-thermophilic pre-hydrolysis stage (70 °C) on methane recovery of sewage sludge at 35 °C. In this configuration, the process performance in both temperatures were estimated and the microbial communities were characterized by full-length16S rRNA genes and/or microbial activities. In addition, the appropriate solubilization reaction time was assessed. The results revealed that the higher hydrolysis and acidogenesis activities were achieved with longer reaction time of pretreatment (5 days) and thus higher organic nitrogen conversion and alkalinity were attained. Under appropriate pretreatment reaction time, pretreated sludge was characterized by 65% higher organic matters solubilization and 1.4-fold higher volatile fatty acids (VFAs) concentration compared to raw sludge. The overall methane yield produced under this scenario was 179 L CH4. KgVSin, with 15% of the absolute yield was produced in hydrolysis reactor. 50% reduction in bacteria belong to Firmicurtes was observed at mesophilic reactor and meanwhile the relative abundance of Bacteroidetes and Cloacimonetes were enhanced. The predominant methanogens in both stages did not change implying adaptation of Methanothermobacter (>62%) to mesophilic condition. However, increasing acetoclastic methanogens up to 30% in mesophilic reactor indicating methane was produced from pretreated sludge mainly through H2- mediated CO2 reduction and partially from acetate cleavage. The results highlight the key role of hyper-thermophilic pre-hydrolysis stage for better stabilization of sewage sludge without further investments in current biogas plants.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Bactérias , Biocombustíveis , Reatores Biológicos , Ácidos Graxos Voláteis , Hidrólise , Metano , Nitrogênio , Temperatura
5.
Bioresour Technol ; 272: 180-187, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30340183

RESUMO

Requirement of a long hydraulic retention time (HRT) for efficient degradation restrains the anaerobic digestion of hydrothermal pretreated sludge. Shortening the HRT can increase the treatment capacity of a plant but may also induce digester instability. This study investigated the impact of HRT on process performance and microbial community by consecutively operating a reactor for 145 days. The HRT was gradually decreased from 20 to 10, 5, and 3 days. The methane yield declined from 0.28 to 0.12 L/g-VSin with this shortening, and acetate concentration increased from 38 to 376 mg/L. Methanoculleus (58%) dominated methanogens at a 20 days HRT. However, the methanogenic structure shifted toward an increased level of Methanospirillum, representing 95% of the total archaea at a 3 days HRT. Microorganisms were almost washed out at the end of experiment. Conclusively, shortening HRTs is a feasible strategy to increase treatment capacity and produce more biogas at existing plants.


Assuntos
Metano/metabolismo , Esgotos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Hidrólise , Esgotos/química , Temperatura
6.
Bioresour Technol ; 288: 121581, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158775

RESUMO

Hyperthermophilic biological hydrolysis of sewage sludge was applied before long-term anaerobic digestion to investigate how shortening hydraulic retention times (HRT, 20-5d) affected methanogenic performances and microbial dynamics. Results indicated that although the three different HRTs provided a stable process with a steady-state of methane production, both methane yield (161 L kg-VSin-1, 25% higher) and volatile solids removal (VS, 50%, 2-fold higher) increased during longer HRTs. Redundancy analysis results indicated that Sporosarcina and Methnosarcina positively correlated to VS removal and methane yield, and negatively correlated to volatile fatty acids (VFAs) accumulation. The relative abundance of Coprothermobacter (>60%), syntrophic acetate oxidation bacteria (SAOB), and Methanospirillum (8-15%), increased during shorter HRTs. A slight shift to two-stage acetate conversion was observed during shorter HRTs. The results demonstrated that HRTs played a key role in shaping microbial structure, leading to a new steady-state of microbial community profiles and process performances at variable HRTs.


Assuntos
Euryarchaeota , Microbiota , Anaerobiose , Reatores Biológicos , Metano , Esgotos
7.
Bioresour Technol ; 248(Pt A): 204-213, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28596077

RESUMO

Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H2 and CH4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H2 and 15d for CH4. Overall, around 59% of the total COD in FW was converted into H2 (4%) and into CH4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway.


Assuntos
Reatores Biológicos , Alimentos , Anaerobiose , Metano
8.
Bioresour Technol ; 264: 42-50, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29783130

RESUMO

The impact of temperature on the anaerobic digestion of chicken manure was investigated by studying the process performance and pathway for continuously-fed digesters under mesophilic and thermophilic conditions. The mesophilic digester obtained a 15% higher methane yield compared with the thermophilic digester. Mesophilic and thermophilic digester had free ammonia of 31 and 145 mg/L, respectively. The stable carbon isotope analysis indicated that 41% and 50% of acetate was converted to methane through the syntrophic acetate oxidation and hydrogenotrophic methanogenesis (SAO-HM) pathway under mesophilic and thermophilic conditions, respectively. The genus Pseudomonas represented 10% and 16% under mesophilic and thermophilic conditions, respectively. A high abundance of the methanogens genus Methanoculleus (94% of total methanogens) in mesophilic and the genus Methanothermobacter (96%) in thermophilic digesters indicated they were the main hydrogenotrophic partners in SAO. The present study therefore illustrated that methanogenic pathway shifting, induced by free ammonia, closely correlated to the process performance.


Assuntos
Reatores Biológicos , Metano/biossíntese , Amônia , Anaerobiose , Euryarchaeota , Nitrogênio , Temperatura
9.
Bioresour Technol ; 244(Pt 1): 996-1005, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28847110

RESUMO

Anaerobic digestion (AD) of FW shows instability due to both the presence of high lipids and accumulation of volatile fatty acids. In this study, AD of food waste (FW) was optimized by removing lipids (LRFW) and by co-digestion with sewage sludge (1:1w/w on dry matter). The results obtained showed that lipids extraction increased FW methane yield from 400 to 418mL-gVSadded-1 under mesophilic conditions (35°C) and from 426 to 531mL-gVSadded-1 in thermophilic conditions (55°C). Two degradation phases (k1 and k2) described FW and LRFW degradation. In the thermophilic, LRFW-k1 (0.1591d-1) was slightly higher than that of FW (k1 of 0.1543d-1) and in the second stage FW-k2 of 0.0552d-1 was higher than that of LRFW (k2 of 0.0117d-1). The majority of LRFW was degraded in the first stage. FW and sewage sludge co-digestion reduced VFA accumulation, preventing media acidification and improving process stability.


Assuntos
Reatores Biológicos , Lipídeos , Anaerobiose , Metano , Esgotos
10.
Bioresour Technol ; 216: 768-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27295255

RESUMO

High-temperature pretreatment plays a key role in the anaerobic digestion of food waste (FW). However, the suitable temperature is not yet determined. In this work, a long-term experiment was conducted to compare hydrolysis, acidogenesis, acetogenesis, and hydrogen production at 55°C and 70°C, using real FW in CSTR reactors. The results obtained indicated that acidification was the rate-limiting step at both temperatures with similar process kinetics characterizations. However, the thermophilic pretreatment was more advantageous than the hyperthermophilic with suspended solids solubilization of 47.7% and 29.5% and total VFA vs. soluble COD ratio of 15.2% and 4.9%, for thermophilic and hyperthermophilic treatment, respectively, with a hydrolytic reaction time (HRT) of 10days and an OLR of 14kgCOD/m(3)d. Moreover, stable hydrogen yield (70.7ml-H2/gVSin) and content in off gas (58.6%) was achieved at HRT 5days, pH 5.5, and temperature of 55°C, as opposed to 70°C.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Alimentos , Hidrogênio/metabolismo , Temperatura , Resíduos , Ácidos/química , Anaerobiose , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Hidrólise , Cinética , Modelos Teóricos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA