Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36418927

RESUMO

Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Biologia Computacional , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Biologia Computacional/métodos , Combinação de Medicamentos , Simulação por Computador
2.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37291761

RESUMO

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.


Assuntos
Sistemas de Liberação de Medicamentos , Redes Neurais de Computação , Humanos , Interações Medicamentosas , Pesquisadores
3.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36411674

RESUMO

Exiting computational models for drug-target binding affinity prediction have much room for improvement in prediction accuracy, robustness and generalization ability. Most deep learning models lack interpretability analysis and few studies provide application examples. Based on these observations, we presented a novel model named Molecule Representation Block-based Drug-Target binding Affinity prediction (MRBDTA). MRBDTA is composed of embedding and positional encoding, molecule representation block and interaction learning module. The advantages of MRBDTA are reflected in three aspects: (i) developing Trans block to extract molecule features through improving the encoder of transformer, (ii) introducing skip connection at encoder level in Trans block and (iii) enhancing the ability to capture interaction sites between proteins and drugs. The test results on two benchmark datasets manifest that MRBDTA achieves the best performance compared with 11 state-of-the-art models. Besides, through replacing Trans block with single Trans encoder and removing skip connection in Trans block, we verified that Trans block and skip connection could effectively improve the prediction accuracy and reliability of MRBDTA. Then, relying on multi-head attention mechanism, we performed interpretability analysis to illustrate that MRBDTA can correctly capture part of interaction sites between proteins and drugs. In case studies, we firstly employed MRBDTA to predict binding affinities between Food and Drug Administration-approved drugs and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication-related proteins. Secondly, we compared true binding affinities between 3C-like proteinase and 185 drugs with those predicted by MRBDTA. The final results of case studies reveal reliable performance of MRBDTA in drug design for SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , Reprodutibilidade dos Testes , Sistemas de Liberação de Medicamentos , Proteínas
4.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34676393

RESUMO

MicroRNAs (miRNAs) play crucial roles in human disease and can be targeted by small molecule (SM) drugs according to numerous studies, which shows that identifying SM-miRNA associations in human disease is important for drug development and disease treatment. We proposed the method of Ensemble of Kernel Ridge Regression-based Small Molecule-MiRNA Association prediction (EKRRSMMA) to uncover potential SM-miRNA associations by combing feature dimensionality reduction and ensemble learning. First, we constructed different feature subsets for both SMs and miRNAs. Then, we trained homogeneous base learners based on distinct feature subsets and took the average of scores obtained from these base learners as SM-miRNA association score. In EKRRSMMA, feature dimensionality reduction technology was employed in the process of construction of feature subsets to reduce the influence of noisy data. Besides, the base learner, namely KRR_avg, was the combination of two classifiers constructed under SM space and miRNA space, which could make full use of the information of SM and miRNA. To assess the prediction performance of EKRRSMMA, we conducted Leave-One-Out Cross-Validation (LOOCV), SM-fixed local LOOCV, miRNA-fixed local LOOCV and 5-fold CV based on two datasets. For Dataset 1 (Dataset 2), EKRRSMMA got the Area Under receiver operating characteristic Curves (AUCs) of 0.9793 (0.8871), 0.8071 (0.7705), 0.9732 (0.8586) and 0.9767 ± 0.0014 (0.8560 ± 0.0027). Besides, we conducted four case studies. As a result, 32 (5-Fluorouracil), 19 (17ß-Estradiol), 26 (5-Aza-2'-deoxycytidine) and 11 (cyclophosphamide) out of top 50 predicted potentially associated miRNAs were confirmed by database or experimental literature. Above evaluation results demonstrated that EKRRSMMA is reliable for predicting SM-miRNA associations.


Assuntos
MicroRNAs , Algoritmos , Área Sob a Curva , Biologia Computacional/métodos , Predisposição Genética para Doença , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Curva ROC
5.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34864865

RESUMO

MicroRNAs (miRNAs) play crucial roles in multiple biological processes and human diseases and can be considered as therapeutic targets of small molecules (SMs). Because biological experiments used to verify SM-miRNA associations are time-consuming and expensive, it is urgent to propose new computational models to predict new SM-miRNA associations. Here, we proposed a novel method called Dual-network Collaborative Matrix Factorization (DCMF) for predicting the potential SM-miRNA associations. Firstly, we utilized the Weighted K Nearest Known Neighbors (WKNKN) method to preprocess SM-miRNA association matrix. Then, we constructed matrix factorization model to obtain two feature matrices containing latent features of SM and miRNA, respectively. Finally, the predicted SM-miRNA association score matrix was obtained by calculating the inner product of two feature matrices. The main innovations of this method were that the use of WKNKN method can preprocess the missing values of association matrix and the introduction of dual network can integrate more diverse similarity information into DCMF. For evaluating the validity of DCMF, we implemented four different cross validations (CVs) based on two distinct datasets and two different case studies. Finally, based on dataset 1 (dataset 2), DCMF achieved Area Under receiver operating characteristic Curves (AUC) of 0.9868 (0.8770), 0.9833 (0.8836), 0.8377 (0.7591) and 0.9836 ± 0.0030 (0.8632 ± 0.0042) in global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV and 5-fold CV, respectively. For case studies, plenty of predicted associations have been confirmed by published experimental literature. Therefore, DCMF is an effective tool to predict potential SM-miRNA associations.


Assuntos
MicroRNAs , Algoritmos , Biologia Computacional/métodos , Predisposição Genética para Doença , Humanos , MicroRNAs/genética , Curva ROC
6.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176761

RESUMO

In recent years, increasing biological experiments and scientific studies have demonstrated that microRNA (miRNA) plays an important role in the development of human complex diseases. Therefore, discovering miRNA-disease associations can contribute to accurate diagnosis and effective treatment of diseases. Identifying miRNA-disease associations through computational methods based on biological data has been proven to be low-cost and high-efficiency. In this study, we proposed a computational model named Stacked Autoencoder for potential MiRNA-Disease Association prediction (SAEMDA). In SAEMDA, all the miRNA-disease samples were used to pretrain a Stacked Autoencoder (SAE) in an unsupervised manner. Then, the positive samples and the same number of selected negative samples were utilized to fine-tune SAE in a supervised manner after adding an output layer with softmax classifier to the SAE. SAEMDA can make full use of the feature information of all unlabeled miRNA-disease pairs. Therefore, SAEMDA is suitable for our dataset containing small labeled samples and large unlabeled samples. As a result, SAEMDA achieved AUCs of 0.9210 and 0.8343 in global and local leave-one-out cross validation. Besides, SAEMDA obtained an average AUC and standard deviation of 0.9102 ± /-0.0029 in 100 times of 5-fold cross validation. These results were better than those of previous models. Moreover, we carried out three case studies to further demonstrate the predictive accuracy of SAEMDA. As a result, 82% (breast neoplasms), 100% (lung neoplasms) and 90% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by databases. Thus, SAEMDA could be a useful and reliable model to predict potential miRNA-disease associations.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , MicroRNAs , Algoritmos , Biologia Computacional/métodos , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética
7.
Environ Sci Technol ; 58(5): 2247-2259, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179619

RESUMO

Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.


Assuntos
Arsênio , Microbioma Gastrointestinal , Animais , Peixe-Zebra , Fígado/metabolismo , Biotransformação , Metiltransferases/genética , Metiltransferases/metabolismo
8.
Food Microbiol ; 124: 104615, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244367

RESUMO

Seeds are important microbial vectors, and seed-associated pathogens can be introduced into a country through trade, resulting in yield and quality losses in agriculture. The aim of this study was to characterize the microbial communities associated with barley seeds, and based on which, to develop technical approaches to trace their geographical origins, and to inspect and identify quarantine pathogens. Our analysis defined the core microbiota of barley seed and revealed significant differences in the barley seed-associated microbial communities among different continents, suggesting a strong geographic specificity of the barley seed microbiota. By implementing a machine learning model, we achieved over 95% accuracy in tracing the origin of barley seeds. Furthermore, the analysis of co-occurrence and exclusion patterns provided important insights into the identification of candidate biocontrol agents or microbial inoculants that could be useful in improving barley yield and quality. A core pathogen database was developed, and a procedure for inspecting potential quarantine species associated with barley seed was established. These approaches proved effective in detecting four fungal and three bacterial quarantine species for the first time in the port of China. This study not only characterized the core microbiota of barley seeds but also provided practical approaches for tracing the regional origin of barley and identifying potential quarantine pathogens.


Assuntos
Bactérias , Fungos , Hordeum , Microbiota , Doenças das Plantas , Sementes , Hordeum/microbiologia , Sementes/microbiologia , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fungos/isolamento & purificação , Fungos/classificação , Fungos/genética , China , Quarentena
9.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32766753

RESUMO

Studies have shown that the number of microbes in humans is almost 10 times that of cells. These microbes have been proven to play an important role in a variety of physiological processes, such as enhancing immunity, improving the digestion of gastrointestinal tract and strengthening metabolic function. In addition, in recent years, more and more research results have indicated that there are close relationships between the emergence of the human noncommunicable diseases and microbes, which provides a novel insight for us to further understand the pathogenesis of the diseases. An in-depth study about the relationships between diseases and microbes will not only contribute to exploring new strategies for the diagnosis and treatment of diseases but also significantly heighten the efficiency of new drugs development. However, applying the methods of biological experimentation to reveal the microbe-disease associations is costly and inefficient. In recent years, more and more researchers have constructed multiple computational models to predict microbes that are potentially associated with diseases. Here, we start with a brief introduction of microbes and databases as well as web servers related to them. Then, we mainly introduce four kinds of computational models, including score function-based models, network algorithm-based models, machine learning-based models and experimental analysis-based models. Finally, we summarize the advantages as well as disadvantages of them and set the direction for the future work of revealing microbe-disease associations based on computational models. We firmly believe that computational models are expected to be important tools in large-scale predictions of disease-related microbes.


Assuntos
Bases de Dados Factuais , Doença , Aprendizado de Máquina , Microbiota , Modelos Biológicos , Humanos
10.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32393976

RESUMO

Effective drugs are urgently needed to overcome human complex diseases. However, the research and development of novel drug would take long time and cost much money. Traditional drug discovery follows the rule of one drug-one target, while some studies have demonstrated that drugs generally perform their task by affecting related pathway rather than targeting single target. Thus, the new strategy of drug discovery, namely pathway-based drug discovery, have been proposed. Obviously, identifying associations between drugs and pathways plays a key role in the development of pathway-based drug discovery. Revealing the drug-pathway associations by experiment methods would take much time and cost. Therefore, some computational models were established to predict potential drug-pathway associations. In this review, we first introduced the background of drug and the concept of drug-pathway associations. Then, some publicly accessible databases and web servers about drug-pathway associations were listed. Next, we summarized some state-of-the-art computational methods in the past years for inferring drug-pathway associations and divided these methods into three classes, namely Bayesian spare factor-based, matrix decomposition-based and other machine learning methods. In addition, we introduced several evaluation strategies to estimate the predictive performance of various computational models. In the end, we discussed the advantages and limitations of existing computational methods and provided some suggestions about the future directions of the data collection and the calculation models development.


Assuntos
Biologia Computacional/métodos , Sistemas de Liberação de Medicamentos , Algoritmos , Teorema de Bayes , Descoberta de Drogas/métodos , Humanos
11.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34347021

RESUMO

In recent years, increasing microRNA (miRNA)-disease associations were identified through traditionally biological experiments. These associations contribute to revealing molecular mechanism of diseases and preventing and curing diseases. To improve the efficiency of miRNA-disease association discovery, some calculation methods were developed as auxiliary tools for researchers. In the current study, we raised a novel model named Bayesian Ranking for MiRNA-Disease Association prediction (BRMDA) by improving Bayesian Personalized Ranking from three aspects: (i) taking advantage of similarity of diseases and miRNAs; (ii) incorporating miRNA bias for miRNAs associated with different number of diseases; and (iii) implementing neighborhood-based approach for new miRNAs and diseases. For each investigated disease, BRMDA used the set of triples (i.e. disease, labeled miRNA, unlabeled miRNA) that reflected association preference of the disease to miRNAs as training set, which made full use of unknown samples rather than simply considering them as negative samples. To investigate the predictive performance of BRMDA, we employed leave-one-out cross-validation and obtained Area Under the Curve of 0.8697, which outperformed many classical methods. Besides, we further implemented three distinct classes of case studies for three common Neoplasms. As a result, there are 44 (Colon Neoplasms), 49 (Esophageal Neoplasms) and 49 (Lung Neoplasms) among the top 50 predicted miRNAs validated through experiments. In short, BRMDA would be a trustable tool for inferring valuable associations.


Assuntos
Teorema de Bayes , Predisposição Genética para Doença , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Humanos , Neoplasias/genética
12.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34329377

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data.


Assuntos
Biologia Computacional/métodos , Neoplasias/genética , RNA Circular/genética , Algoritmos , Bases de Dados Genéticas , Feminino , Humanos , Aprendizado de Máquina , Modelos Genéticos
13.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34020550

RESUMO

MicroRNA (miRNA) plays an important role in the occurrence, development, diagnosis and treatment of diseases. More and more researchers begin to pay attention to the relationship between miRNA and disease. Compared with traditional biological experiments, computational method of integrating heterogeneous biological data to predict potential associations can effectively save time and cost. Considering the limitations of the previous computational models, we developed the model of deep-belief network for miRNA-disease association prediction (DBNMDA). We constructed feature vectors to pre-train restricted Boltzmann machines for all miRNA-disease pairs and applied positive samples and the same number of selected negative samples to fine-tune DBN to obtain the final predicted scores. Compared with the previous supervised models that only use pairs with known label for training, DBNMDA innovatively utilizes the information of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few known associations on prediction accuracy to some extent. DBNMDA achieves the AUC of 0.9104 based on global leave-one-out cross validation (LOOCV), the AUC of 0.8232 based on local LOOCV and the average AUC of 0.9048 ± 0.0026 based on 5-fold cross validation. These AUCs are better than other previous models. In addition, three different types of case studies for three diseases were implemented to demonstrate the accuracy of DBNMDA. As a result, 84% (breast neoplasms), 100% (lung neoplasms) and 88% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Therefore, we could conclude that DBNMDA is an effective method to predict potential miRNA-disease associations.


Assuntos
Predisposição Genética para Doença , MicroRNAs/genética , Neoplasias da Mama , Humanos , Neoplasias Pulmonares , Reprodutibilidade dos Testes
14.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34404088

RESUMO

Mounting evidence has demonstrated the significance of taking microRNAs (miRNAs) as the target of small molecule (SM) drugs for disease treatment. Given the fact that exploring new SM-miRNA associations through biological experiments is extremely expensive, several computing models have been constructed to reveal the possible SM-miRNA associations. Here, we built a computing model of Bounded Nuclear Norm Regularization for SM-miRNA Associations prediction (BNNRSMMA). Specifically, we first constructed a heterogeneous SM-miRNA network utilizing miRNA similarity, SM similarity, confirmed SM-miRNA associations and defined a matrix to represent the heterogeneous network. Then, we constructed a model to complete this matrix by minimizing its nuclear norm. The Alternating Direction Method of Multipliers was adopted to minimize the nuclear norm and obtain predicted scores. The main innovation lies in two aspects. During completion, we limited all elements of the matrix within the interval of (0,1) to make sure they have practical significance. Besides, instead of strictly fitting all known elements, a regularization term was incorporated to tolerate the noise in integrated similarities. Furthermore, four kinds of cross-validations on two datasets and two types of case studies were performed to evaluate the predictive performance of BNNRSMMA. Finally, BNNRSMMA attained areas under the curve of 0.9822 (0.8433), 0.9793 (0.8852), 0.8253 (0.7350) and 0.9758 ± 0.0029 (0.8759 ± 0.0041) under global leave-one-out cross-validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and 5-fold cross-validation based on Dataset 1(Dataset 2), respectively. With regard to case studies, plenty of predicted associations have been verified by experimental literatures. All these results confirmed that BNNRSMMA is a reliable tool for inferring associations.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Ligantes , MicroRNAs/química , Algoritmos , Área Sob a Curva , Biologia Computacional/normas , Descoberta de Drogas/normas , Humanos , MicroRNAs/genética , Curva ROC , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
15.
J Med Internet Res ; 25: e41189, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067854

RESUMO

BACKGROUND: Measuring pain on digital devices using classic unidimensional pain scales such as the visual analog scale (VAS), numerical rating scale (NRS), and faces pain scale (FPS) has been proven to be reliable and valid. Emoji are pictographs designed in colorful form following the Unicode standard. It could be more beneficial to use emoji as faces of FPS on digital devices because emoji can easily fit on most devices and emoji are open-source so no approval would be needed before use. With a concise and user-friendly design, the emoji faces pain scale (Emoji-FPS) might be more generalizable to a wider population and more preferred by digital device users. OBJECTIVE: This study was designed to develop an Emoji-FPS as well as to evaluate its reliability, validity, and preference on mobile devices in adult patients who underwent surgery. METHODS: A modified Delphi technique with 2 rounds of web-based surveys was applied to obtain panelists' consensus on the sequence of emoji that can best represent 6 levels of pain. The initial candidate sequences of emoji for the Delphi process were constructed referring to 2 well-validated FPSs (Wong-Baker FACES pain rating scale [Wong-Baker FACES] and faces pain scale-revised [FPS-R]). Then, a prospective cohort of patients scheduled to receive perianal surgery was recruited and asked to complete a web-based questionnaire on a mobile device at 5 time points (before surgery [T1], wake up after surgery [T2], 4 hours after surgery [T3], the second day after surgery [T4], and 15 minutes after T4 [T5]). The 4 well-validated pain scales (NRS, VAS, Wong-Baker FACES, and FPS-R) were used as reference scales. RESULTS: After 2 rounds of surveys on 40 Delphi panelists, an Emoji-FPS was finally determined to represent 6 pain levels (0, 2, 4, 6, 8, and 10) from "no hurt" to "hurts worst." For validation, 300 patients were recruited and 299 were analyzed, the mean age of whom was 38.5 (SD 10.5) years, and 106 (35.5%) were women. For concurrent validity, the Emoji-FPS was highly correlated with 4 reference scales with Spearman correlation coefficient ρ ranging from 0.91 to 0.95. Excellent agreements were observed between 4 versions of Emoji-FPS (iOS, Android, Microsoft, and OpenMoji), with weighted κ coefficients ranging from 0.96 to 0.97. For discriminant validity, patients' mean preoperative Emoji-FPS score (T1) was significantly higher than their postoperative Emoji-FPS score (T4) with a difference of 1.4 (95% CI 1.3-1.6; P<.001). For test-retest reliability, Emoji-FPS scores measured at T4 and T5 were highly correlated with a ρ of 0.91. The Emoji-FPS was mostly preferred, followed by the Wong-Baker FACES, FPS-R, NRS, and VAS. CONCLUSIONS: The Emoji-FPS is reliable and valid compared with traditional pain scales in adult surgery patients.


Assuntos
Computadores de Mão , Dor Pós-Operatória , Procedimentos Cirúrgicos Operatórios , Adulto , Feminino , Humanos , Masculino , Estudos Longitudinais , Dor Pós-Operatória/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Telemedicina , Cirurgia Geral
16.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328490

RESUMO

Pufferfish are considered a culinary delicacy but require careful preparation to avoid ingestion of the highly toxic tetrodotoxin (TTX), which accumulates in certain tissues. In this study, the tissue distribution of peroxiredoxin-1 from Takifugu bimaculatus was investigated. The peroxiredoxin-1 protein was obtained by in vitro recombinant expression and purification. The recombinant protein had a strong ability to scavenge hydroxyl radicals, protect superhelical DNA plasmids from oxidative damage, and protect L929 cells from H2O2 toxicity through in vitro antioxidant activity. In addition, we verified its ability to bind to tetrodotoxin using surface plasmon resonance techniques. Further, recombinant proteins were found to facilitate the entry of tetrodotoxin into cells. Through these analyses, we identified, for the first time, peroxiredoxin-1 protein from Takifugu bimaculatus as a potential novel tetrodotoxin-binding protein. Our findings provide a basis for further exploration of the application of peroxiredoxin-1 protein and the molecular mechanisms of tetrodotoxin enrichment in pufferfish.


Assuntos
Peroxirredoxinas , Takifugu , Animais , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Canais de Sódio , Takifugu/genética , Takifugu/metabolismo , Tetrodotoxina/toxicidade
17.
Mar Drugs ; 19(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822510

RESUMO

Pufferfish is increasingly regarded by many as a delicacy. However, the tetrodotoxin (TTX) that accumulates in its body can be lethal upon consumption by humans. TTX is known to mainly accumulate in pufferfish skin, but the accumulation mechanisms are poorly understood. In this study, we aimed to explore the possible mechanism of TTX accumulation in the skin of the pufferfish Takifugu flavidus following treatment with TTX. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we detected 37.3% of toxin accumulated in the skin at the end of the rearing period (168 h). Transcriptome and proteome analyses revealed the mechanism and pathways of TTX accumulation in the skin of T. flavidus in detail. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes analyses strongly suggest that cardiac muscle contraction and adrenergic signaling in cardiomyocyte pathways play an important role in TTX accumulation. Moreover, some upregulated and downregulated genes, which were determined via RNA-Seq, were verified with qPCR analysis. This study is the first to use multi-omics profiling data to identify novel regulatory network mechanisms of TTX accumulation in the skin of pufferfish.


Assuntos
Pele/metabolismo , Takifugu , Tetrodotoxina/farmacocinética , Administração Oral , Animais , Organismos Aquáticos , Regulação da Expressão Gênica , Tetrodotoxina/administração & dosagem , Tetrodotoxina/genética
18.
Genomics ; 112(1): 809-819, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136792

RESUMO

Many biological experimental studies have confirmed that microRNAs (miRNAs) play a significant role in human complex diseases. Exploring miRNA-disease associations could be conducive to understanding disease pathogenesis at the molecular level and developing disease diagnostic biomarkers. However, since conducting traditional experiments is a costly and time-consuming way, plenty of computational models have been proposed to predict miRNA-disease associations. In this study, we presented a neoteric Bayesian model (KBMFMDA) that combines kernel-based nonlinear dimensionality reduction, matrix factorization and binary classification. The main idea of KBMFMDA is to project miRNAs and diseases into a unified subspace and estimate the association network in that subspace. KBMFMDA obtained the AUCs of 0.9132, 0.8708, 0.9008±0.0044 in global and local leave-one-out and five-fold cross validation. Moreover, KBMFMDA was applied to three important human cancers in three different kinds of case studies and most of the top 50 potential disease-related miRNAs were confirmed by many experimental reports.


Assuntos
Estudos de Associação Genética/métodos , MicroRNAs , Neoplasias/genética , Algoritmos , Teorema de Bayes , Neoplasias do Colo/genética , Neoplasias Esofágicas/genética , Humanos , Linfoma/genética
19.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 678-686, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33793003

RESUMO

The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, intestinal barrier and gut microbiota of weaned pigs were investigated in the present study. A total of 108 piglets (Duroc × Landrace × Yorkshire; 6.36 kg; weaned at 21 ± 1 d age) were used in this experiment. The pigs were randomly assigned to three treatments with six replicates, six pigs in each replicate. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet supplemented with 39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; and (3) Cu +Zn +Mt group: basal diet supplemented with the mixture of copper sulphate, zinc sulphate and montmorillonite (equivalent to the copper and zinc in the Cu/Zn-Mt treatment). The results indicated that, compared with the pigs from control group, average daily gain and gain: feed ratio were increased and the faecal score on days 7 and 14 after weaning was decreased by supplementation of Cu/Zn-Mt; intestinal transepithelial electrical resistance (TER) and expressions of tight junction protein claudin-1 and zonula occludens-1 were increased, and intestinal permeability of fluorescein isothiocyanate-dextran 4 kDa was decreased by supplementation with Cu/Zn-Mt. According to the Illumina-based sequencing results, Cu/Zn-Mt supplementation increased the relative abundance of core bacteria (Lactococcus, Bacillus) at genus level and decreased the potentially pathogenic bacteria (Streptococcus and Pseudomonas) in colon of weaned piglets. However, the piglets fed with the mixture of copper sulphate, zinc sulphate and montmorillonite showed no effects in above parameters in comparison with the pigs from control group. In conclusion, dietary Cu/Zn-Mt could improve growth performance, decrease the diarrhoea and improve intestinal barrier and bacterial communities of weaned pigs. The results indicated that 'loading' of montmorillonite with Zn and Cu changed not only its chemical but also its nutritional properties.


Assuntos
Microbioma Gastrointestinal , Zinco , Animais , Bentonita , Cobre/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Suínos , Desmame , Zinco/farmacologia
20.
J Cell Mol Med ; 24(1): 573-587, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747722

RESUMO

Accumulating experimental evidence has demonstrated that microRNAs (miRNAs) have a huge impact on numerous critical biological processes and they are associated with different complex human diseases. Nevertheless, the task to predict potential miRNAs related to diseases remains difficult. In this paper, we developed a Kernel Fusion-based Regularized Least Squares for MiRNA-Disease Association prediction model (KFRLSMDA), which applied kernel fusion technique to fuse similarity matrices and then utilized regularized least squares to predict potential miRNA-disease associations. To prove the effectiveness of KFRLSMDA, we adopted leave-one-out cross-validation (LOOCV) and 5-fold cross-validation and then compared KFRLSMDA with 10 previous computational models (MaxFlow, MiRAI, MIDP, RKNNMDA, MCMDA, HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA). Outperforming other models, KFRLSMDA achieved AUCs of 0.9246 in global LOOCV, 0.8243 in local LOOCV and average AUC of 0.9175 ± 0.0008 in 5-fold cross-validation. In addition, respectively, 96%, 100% and 90% of the top 50 potential miRNAs for breast neoplasms, colon neoplasms and oesophageal neoplasms were confirmed by experimental discoveries. We also predicted potential miRNAs related to hepatocellular cancer by removing all known related miRNAs of this cancer and 98% of the top 50 potential miRNAs were verified. Furthermore, we predicted potential miRNAs related to lymphoma using the data set in the old version of the HMDD database and 80% of the top 50 potential miRNAs were confirmed. Therefore, it can be concluded that KFRLSMDA has reliable prediction performance.


Assuntos
Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Estudos de Associação Genética , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Predisposição Genética para Doença , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA