Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(1): 120-129, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320006

RESUMO

Energy-saving photodetectors are the key components in future photonic systems. Particularly, self-powered photoelectrochemical-type photodetectors (PEC-PDs), which depart completely from the classical solid-state junction device, have lately intrigued intensive interest to meet next-generation power-independent and environment-sensitive photodetection. Herein, we construct, for the first time, solar-blind PEC PDs based on self-assembled AlGaN nanostructures on silicon. Importantly, with the proper surface platinum (Pt) decoration, a significant boost of photon responsivity by more than an order of magnitude was achieved in the newly built Pt/AlGaN nanoarchitectures, demonstrating strikingly high responsivity of 45 mA/W and record fast response/recovery time of 47/20 ms without external power source. Such high solar-blind photodetection originates from the unparalleled material quality, fast interfacial kinetics, as well as high carrier separation efficiency which suggests that embracement of defect-free wide-bandgap semiconductor nanostructures with appropriate surface decoration offers an unprecedented opportunity for designing future energy-efficient and large-scale optoelectronic systems on a silicon platform.

2.
Rep Prog Phys ; 84(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33477132

RESUMO

Wide bandgap aluminum gallium nitride (AlGaN) semiconductor alloys have established themselves as the key materials for building ultraviolet (UV) optoelectronic and power electronic devices. However, further improvements to device performance are lagging, largely due to the difficulties in precisely controlling carrier behavior, both carrier generation and carrier transport, within AlGaN-based devices. Fortunately, it has been discovered that instead of using AlGaN layers with fixed Al compositions, by grading the Al composition along the growth direction, it is possible to (1) generate high-density electrons and holes via polarization-induced doping; (2) manipulate carrier transport behavior via energy band modulation, also known as 'band engineering'. Consequently, such compositionally graded AlGaN alloys have attracted extensive interest as promising building blocks for efficient AlGaN-based UV light emitters and power electronic devices. In this review, we focus on the unique physical properties of graded AlGaN alloys and highlight the key roles that such graded structures play in device exploration. Firstly, we elaborate on the underlying mechanisms of efficient carrier generation and transport manipulation enabled by graded AlGaN alloys. Thereafter, we comprehensively summarize and discuss the recent progress in UV light emitters and power electronic devices incorporating graded AlGaN structures. Finally, we outline the prospects associated with the implementation of graded AlGaN alloys in the pursuit of high-performance optoelectronic and power electronic devices.

3.
Opt Lett ; 46(19): 4809-4812, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598205

RESUMO

In this Letter, we perform a comprehensive investigation on the optical characterization of micro-sized deep-ultraviolet (DUV) LEDs (micro-LEDs) emitting below 280 nm, highlighting the light extraction behavior in relation to the design of chip sidewall angle. We found that the micro-LEDs with a smaller inclined chip sidewall angle (∼33∘) have improved external quantum efficiency (EQE) performance 19% more than that of the micro-LEDs with a larger angle (∼75∘). Most importantly, the EQE improvement by adopting an inclined sidewall can be more outstanding as the diameter of the LED chip reduces from 40 to 20 µm. The enhanced EQE of the micro-LEDs with smaller inclined chip sidewall angles can be attributed to the stronger reflection of the inclined sidewall, leading to enhanced light extraction efficiency (LEE). In the end, the numerical optical modeling further reveals and verifies the impact of the sidewall angles on the LEE of the micro-LEDs, corroborating our experiment results. This Letter provides a fundamental understanding of the light extraction behavior with optimized chip geometry to design and fabricate highly efficient micro-LEDs in a DUV spectrum of the future.

4.
Opt Lett ; 46(13): 3203-3206, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197416

RESUMO

We report a GaN-based self-powered metal-semiconductor-metal (MSM)-type ultraviolet (UV) photodetector (PD) by employing a "lateral polarity structure (LPS)" grown on the sapphire substrate. An in-plane internal electric field and different Schottky barrier heights at a metal/semiconductor interface lead to efficient carrier separation and self-powered UV detection. A dark current of 6.8nA/cm2 and detectivity of 1.0×1012 Jones were obtained without applied bias. A high photo-to-dark current ratio of 1.2×104 and peak responsivity of 933.7 mA/W were achieved for the lateral polarity structure-photodetector (LPS-PD) under -10V. The enhanced performance of the LPS-PD was ascribed to the polarization-induced carrier separation as demonstrated by the lateral band diagram.

5.
Opt Lett ; 46(13): 3271-3274, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197433

RESUMO

The investigation of electrical and optical properties of micro-scale AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) emitting at ∼275nm was carried out, with an emphasis on fabricated devices having a diameter of 300, 200, 100, 50, and 20 µm, respectively. It was revealed that the LED chips with smaller mesa areas deliver considerably higher light output power density; meanwhile, they can sustain a higher current density, which is mainly attributed to the enhanced current spreading uniformity in micro-scale chips. Importantly, when the diameter of LED chips decreases from 300 µm to 20 µm, the peak external quantum efficiency (EQE) increases by 20%, and the EQE peak current density can be boosted from 8.85A/cm2 and 99.52A/cm2. Moreover, we observed a longer wavelength emission with enlarged full-width at half-maximum (FWHM) in the LEDs with smaller chip sizes because of the self-heating effect at high current injection. These experimental observations provide insights into the design and fabrication of high-efficiency micro-LEDs emitting in the DUV regime with different device geometries for various future applications.

6.
Opt Lett ; 46(21): 5356-5359, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724474

RESUMO

A hybrid patterned sapphire substrate (HPSS) aiming to achieve high-quality Al(Ga)N epilayers for the development of GaN-based ultraviolet light-emitting diodes (UV LEDs) has been prepared. The high-resolution X-ray diffraction measurements reveal that the Al(Ga)N epilayers grown on a HPSS and conventional patterned sapphire substrate (CPSS) have similar structural quality. More importantly, benefiting from the larger refractive index contrast between the patterned silica array and sapphire, the photons can escape from the hybrid substrate with an improved transmittance in the UV band. As a result, in comparison with the UV LEDs grown on the CPSS, the LEDs grown on the HPSS exhibit a significantly enhanced light output power by 14.5% and more than 22.9% higher peak external quantum efficiency, owing to the boost of the light extraction efficiency from the adoption of the HPSS which can be used as a promising substrate to realize high-efficiency and high-power UV LEDs of the future.

7.
Neural Netw ; 171: 410-422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141476

RESUMO

RGB-T Salient object detection (SOD) is to accurately segment salient regions in both visible light images and thermal infrared images. However, most of existing methods for SOD neglects the critical complementarity between multiple modalities images, which is beneficial to further improve the detection accuracy. Therefore, this work introduces the MSEDNet RGB-T SOD method. We utilize an encoder to extract multi-level modalities features from both visible light images and thermal infrared images, which are subsequently categorized into high, medium, and low level. Additionally, we propose three separate feature fusion modules to comprehensively extract complementary information between different modalities during the fusion process. These modules are applied to specific feature levels: the Edge Dilation Sharpening module for low-level features, the Spatial and Channel-Aware module for mid-level features, and the Cross-Residual Fusion module for high-level features. Finally, we introduce an edge fusion loss function for supervised learning, which effectively extracts edge information from different modalities and suppresses background noise. Comparative demonstrate the superiority of the proposed MSEDNet over other state-of-the-art methods. The code and results can be found at the following link: https://github.com/Zhou-wy/MSEDNet.

8.
Adv Mater ; 36(1): e2307779, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009587

RESUMO

The operational principle of semiconductor devices critically relies on the band structures that ultimately govern their charge-transfer characteristics. Indeed, the precise orchestration of band structure within semiconductor devices, notably at the semiconductor surface and corresponding interface, continues to pose a perennial conundrum. Herein, for the first time, this work reports a novel postepitaxy method: thickness-tunable carbon layer decoration to continuously manipulate the surface band bending of III-nitride semiconductors. Specifically, the surface band bending of p-type aluminum-gallium-nitride (p-AlGaN) nanowires grown on n-Si can be precisely controlled by depositing different carbon layers as guided by theoretical calculations, which eventually regulate the ambipolar charge-transfer behavior between the p-AlGaN/electrolyte and p-AlGaN/n-Si interface in an electrolyte environment. Enabled by the accurate modulation of the thickness of carbon layers, a spectrally distinctive bipolar photoresponse with a controllable polarity-switching-point over a wide spectrum range can be achieved, further demonstrating reprogrammable photoswitching logic gates "XOR", "NAND", "OR", and "NOT" in a single device. Finally, this work constructs a secured image transmission system where the optical signals are encrypted through the "XOR" logic operations. The proposed continuous surface band tuning strategy provides an effective avenue for the development of multifunctional integrated-photonics systems implemented with nanophotonics.

9.
Nanomicro Lett ; 16(1): 192, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743197

RESUMO

Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications. In particular, emerging photoelectrochemical (PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics. Herein, a PEC-type photosensor was carefully designed and constructed by employing gallium nitride (GaN) p-n homojunction semiconductor nanowires on silicon, with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide (CoNiOx). Essentially, the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface, while CoNiOx decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface. Consequently, the constructed photosensor achieves a high responsivity of 247.8 mA W-1 while simultaneously exhibiting excellent operating stability. Strikingly, based on the remarkable stability and high responsivity of the device, a glucose sensing system was established with a demonstration of glucose level determination in real human serum. This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.

10.
Adv Mater ; 35(28): e2300911, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912711

RESUMO

The p-n junction with bipolar characteristics sets the fundamental unit to build electronics while its unique rectification behavior constrains the degree of carrier tunability for expanded functionalities. Herein, a bipolar-junction photoelectrode employed with a gallium nitride (GaN) p-n homojunction nanowire array that operates in electrolyte is reported, demonstrating bipolar photoresponse controlled by different wavelengths of light. Significantly, with rational decoration of a ruthenium oxides (RuOx ) layer on nanowires guided by theoretical modeling, the resulting RuOx /p-n GaN photoelectrode exhibits unambiguously boosted bipolar photoresponse by an enhancement of 775% and 3000% for positive and negative photocurrents, respectively, compared to the pristine nanowires. The loading of the RuOx layer on nanowire surface optimizes surface band bending, which facilitates charge transfer across the GaN/electrolyte interface, meanwhile promoting the efficiency of redox reaction for both hydrogen evolution reaction and oxygen evolution reaction which corresponds to the negative and positive photocurrents, respectively. Finally, a dual-channel optical communication system incorporated with such photoelectrode is constructed with using only one photoelectrode to decode dual-band signals with encrypted property. The proposed bipolar device architecture presents a viable route to manipulate the carrier dynamics for the development of a plethora of multifunctional optoelectronic devices for future sensing, communication, and imaging systems.


Assuntos
Fotoquímica , Luz , Eletrólitos/química , Fotoquímica/instrumentação , Fotoquímica/métodos , Óxidos/química , Compostos de Rutênio/química , Nanofios/química
11.
ACS Nano ; 17(4): 3901-3912, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753692

RESUMO

The physicochemical properties of a semiconductor surface, especially in low-dimensional nanostructures, determine the electrical and optical behavior of the devices. Thereby, the precise control of surface properties is a prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for promoting device characteristics. Here, we report a facile approach to suppress the photocorrosion effect while boosting the photoresponse performance of n-GaN nanowires in a constructed photoelectrochemical-type photodetector by employing Co3O4 nanoclusters as a hole charging layer. Essentially, the Co3O4 nanoclusters not only alleviate nanowires from corrosion by optimizing the oxygen evolution reaction kinetics at the nanowire/electrolyte interface but also facilitate an efficient photogenerated carrier separation, migration, and collection process, leading to a significant ease of photocurrent attenuation (improved by nearly 867% after Co3O4 decoration). Strikingly, a record-high responsivity of 217.2 mA W-1 with an ultrafast response/recovery time of 0.03/0.02 ms can also be achieved, demonstrating one of the best performances among the reported photoelectrochemical-type photodetectors, that ultimately allowed us to build an underwater optical communication system based on the proposed nanowire array for practical applications. This work provides a perspective for the rational design of stable nanostructures for various applications in photo- and biosensing or energy-harvesting nanosystems.

12.
Front Plant Sci ; 13: 890309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832222

RESUMO

Parental (environmental) effects can modify the growth of offspring, which may play an essential role in their adaptation to environmental variation. While numerous studies have tested parental effects on offspring growth, most have considered offspring growth of only one generation and very few have considered offspring growth of different generations. We conducted a greenhouse experiment with an aquatic clonal plant Pistia stratiotes. We grew a single ramet of P. stratiotes under low or high nutrients, the initial (parent) ramets produced three different generations of offspring ramets, and these offspring ramets were also subjected to the same two nutrient levels. High nutrients currently experienced by the offspring increased biomass accumulation and ramet number of all three offspring generations of P. stratiotes. However, these positive effects on biomass were greater when the offspring ramets originated from the parent ramets grown under low nutrients than when they were produced by the parent ramets grown under high nutrients. These results suggest that parental effects can impact the performance of different offspring generations of clonal plants. However, heavier offspring ramets produced under high nutrients in parental conditions did not increase the subsequent growth of the offspring generations. This finding indicates that parental provisioning in favorable conditions may not always increase offspring growth, partly depending on root allocation but not ramet size such as ramet biomass.

13.
Light Sci Appl ; 11(1): 227, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853856

RESUMO

III-V semiconductor nanowires are indispensable building blocks for nanoscale electronic and optoelectronic devices. However, solely relying on their intrinsic physical and material properties sometimes limits device functionalities to meet the increasing demands in versatile and complex electronic world. By leveraging the distinctive nature of the one-dimensional geometry and large surface-to-volume ratio of the nanowires, new properties can be attained through monolithic integration of conventional nanowires with other easy-synthesized functional materials. Herein, we combine high-crystal-quality III-nitride nanowires with amorphous molybdenum sulfides (a-MoSx) to construct III-nitride/a-MoSx core-shell nanostructures. Upon light illumination, such nanostructures exhibit striking spectrally distinctive photodetection characteristic in photoelectrochemical environment, demonstrating a negative photoresponsivity of -100.42 mA W-1 under 254 nm illumination, and a positive photoresponsivity of 29.5 mA W-1 under 365 nm illumination. Density functional theory calculations reveal that the successful surface modification of the nanowires via a-MoSx decoration accelerates the reaction process at the electrolyte/nanowire interface, leading to the generation of opposite photocurrent signals under different photon illumination. Most importantly, such polarity-switchable photoconductivity can be further tuned for multiple wavelength bands photodetection by simply adjusting the surrounding environment and/or tailoring the nanowire composition, showing great promise to build light-wavelength controllable sensing devices in the future.

14.
Nanoscale ; 14(45): 16829-16836, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349807

RESUMO

Nowadays, vacuum-ultraviolet (VUV) photodetectors (PDs) have attracted extensive attention owing to their potential applications in space exploration, radiation monitoring, and the semiconductor industry. Benefiting from its intrinsic ultra-wide band-gap, chemical robustness, and low-cost features, LaAlO3 shows great promise in developing next-generation compact, cheap, and easy-to-fabricate VUV PDs. In this work, we report the unique anisotropic photoresponse behavior of LaAlO3 single crystals for VUV photodetection applications. First of all, with the guidance of density functional theory (DFT) calculations along with the comprehensive material characterization, the anisotropic carrier transport behavior of LaAlO3 single crystals was confirmed. Thereafter, after exploring the metal-semiconductor-metal (MSM) device configuration along different substrate orientations, including (100), (110), and (111)-LaAlO3 single crystals, we found that the (110)-LaAlO3 VUV PD exhibits the best device performance under VUV illumination, with a responsivity of 2.23 mA W-1, a high detectivity of 3.72 × 1011 Jones, and a photo-to-dark-current ratio of 5.48 × 103. This work not only provides a feasible avenue to explore the anisotropic optoelectronic behavior of ultra-wide band-gap semiconductors but also expands the application of the low-cost oxide perovskite family in the field of VUV photodetection.

15.
ACS Appl Mater Interfaces ; 13(39): 46951-46966, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34547200

RESUMO

A novel method of oxide semiconductor nanoparticle synthesis is proposed based on high-voltage, high-current electrical switching discharge (HVHC-ESD). Through a subsecond discharge in the HVHC-ESD method, we successfully synthesized zinc oxide (ZnO) nanorods. Crystallography and optical and electrical analyses approve the high crystal-quality and outstanding optoelectronic characteristics of our synthesized ZnO. The HVHC-ESD method enables the synthesis of ZnO nanorods with ultraviolet (UV) and visible emissions. To demonstrate the effectiveness of our prepared materials, we also fabricated two UV photodetectors based on the ZnO nanorods synthesized using the subsecond HVHC-ESD method. The UV-photodetector test under dark and UV light irradiation also had a promising result with a linear ohmic current-voltage output. In addition to the HVHC-ESD method's excellent tunability for ZnO properties, this method enables the rapid synthesis of ZnO nanorods in open air and water. The results demonstrate the preparation, highlight the synthesis of fine hexagonal-shaped nanorods under a second with controlled oxygen vacancies, and point defects for a wide range of applications in less than a second.

16.
Nat Commun ; 11(1): 1029, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098951

RESUMO

Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt-support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H2SO4 and 46 mV in 1.0 M NaOH at 10 mA cm-2, and long-term durability in wide-pH electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA