Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669665

RESUMO

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Animais , Humanos , Camundongos , Galinhas , Furões , Vírus da Influenza A Subtipo H3N2 , Aerossóis e Gotículas Respiratórios
2.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358287

RESUMO

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Aves , Genótipo , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Filogenia , Aves Domésticas
3.
Am J Epidemiol ; 193(4): 596-605, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37946322

RESUMO

Exploring the relative role of different indoor environments in respiratory infections transmission remains unclear, which is crucial for developing targeted nonpharmaceutical interventions. In this study, a total of 2,583,441 influenza-like illness cases tested from 2010 to 2017 in China were identified. An agent-based model was built and calibrated with the surveillance data, to assess the roles of 3 age groups (children <19 years, younger adults 19-60 years, older adults >60 years) and 4 types of indoor environments (home, schools, workplaces, and community areas) in influenza transmission by province with varying urbanization rates. When the urbanization rates increased from 35% to 90%, the proportion of children aged <19 years among influenza cases decreased from 76% to 45%. Additionally, we estimated that infections originating from children decreased from 95.1% (95% confidence interval (CI): 92.7, 97.5) to 59.3% (95% CI: 49.8, 68.7). Influenza transmission in schools decreased from 80.4% (95% CI: 76.5, 84.3) to 36.6% (95% CI: 20.6, 52.5), while transmission in the community increased from 2.4% (95% CI: 1.9, 2.8) to 45.4% (95% CI: 35.9, 54.8). With increasing urbanization rates, community areas and younger adults contributed more to infection transmission. These findings could help the development of targeted public health policies. This article is part of a Special Collection on Environmental Epidemiology. This article is part of a Special Collection on Environmental Epidemiology.


Assuntos
Influenza Humana , Infecções Respiratórias , Viroses , Criança , Humanos , Idoso , Influenza Humana/epidemiologia , Urbanização , China/epidemiologia
4.
PLoS Pathog ; 18(12): e1011046, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36525468

RESUMO

Circulation of seasonal influenza is the product of complex interplay among multiple drivers, yet characterizing the underlying mechanism remains challenging. Leveraging the diverse seasonality of A(H3N2) virus and abundant climatic space across regions in China, we quantitatively investigated the relative importance of population susceptibility, climatic factors, and antigenic change on the dynamics of influenza A(H3N2) through an integrative modelling framework. Specifically, an absolute humidity driven multiscale transmission model was constructed for the 2013/2014, 2014/2015 and 2016/2017 influenza seasons that were dominated by influenza A(H3N2). We revealed the variable impact of absolute humidity on influenza transmission and differences in the occurring timing and magnitude of antigenic change for those three seasons. Overall, the initial population susceptibility, climatic factors, and antigenic change explained nearly 55% of variations in the dynamics of influenza A(H3N2). Specifically, the additional variation explained by the initial population susceptibility, climatic factors, and antigenic change were at 33%, 26%, and 48%, respectively. The vaccination program alone failed to fully eliminate the summer epidemics of influenza A(H3N2) and non-pharmacological interventions were needed to suppress the summer circulation. The quantitative understanding of the interplay among driving factors on the circulation of influenza A(H3N2) highlights the importance of simultaneous monitoring of fluctuations for related factors, which is crucial for precise and targeted prevention and control of seasonal influenza.


Assuntos
Epidemias , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , China/epidemiologia
5.
Emerg Infect Dis ; 29(6): 1191-1201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37069608

RESUMO

The continuous evolution of avian influenza viruses (AIVs) of subtype H3 in China and the emergence of human infection with AIV subtype H3N8 highlight their threat to public health. Through surveillance in poultry-associated environments during 2009-2022, we isolated and sequenced 188 H3 AIVs across China. Performing large-scale sequence analysis with publicly available data, we identified 4 sublineages of H3 AIVs established in domestic ducks in China via multiple introductions from wild birds from Eurasia. Using full-genome analysis, we identified 126 distinct genotypes, of which the H3N2 G23 genotype predominated recently. H3N8 G25 viruses, which spilled over from birds to humans, might have been generated by reassortment between H3N2 G23, wild bird H3N8, and poultry H9N2 before February 2021. Mammal-adapted and drug-resistance substitutions occasionally occurred in H3 AIVs. Ongoing surveillance for H3 AIVs and risk assessment are imperative for potential pandemic preparedness.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Humanos , Animais , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H9N2/genética , Genoma Viral , Filogenia , Aves , Aves Domésticas , China/epidemiologia , Mamíferos
6.
N Engl J Med ; 382(8): 727-733, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31978945

RESUMO

In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Pulmão/diagnóstico por imagem , Pneumonia Viral/virologia , Adulto , Betacoronavirus/genética , Betacoronavirus/ultraestrutura , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Células Cultivadas , China , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/patologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Genoma Viral , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Filogenia , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/patologia , Radiografia Torácica , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2
7.
J Med Virol ; 95(1): e28394, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495182

RESUMO

Currently, the clinical factors affecting immune responses to influenza vaccines have not been systematically explored. The mechanism of low responsiveness to influenza vaccination (LRIV) is complicated and not thoroughly elucidated. Thus, we integrate our in-house genome-wide association studies (GWAS) analysis result of LRIV (N = 111, Ncase [Low Responders] = 34, Ncontrol [Responders] = 77) with the GWAS summary of 10 blood-based biomarkers (sample size ranging from 62 076-108 794) deposited in BioBank Japan (BBJ) to comprehensively explore the shared genetics between LRIV and blood-based biomarkers to investigate the causal relationships between blood-based biomarkers and LRIV by Mendelian randomization (MR). The applications of four MR approaches (inverse-variance-weighted [IVW], weighted median, weighted mode, and generalized summary-data-based MR [GSMR]) suggested that the genetically instrumented LRIV was associated with decreased eosinophil count (ß = -5.517 to -4.422, p = 0.004-0.039). Finally, we conclude that the low level of eosinophil count is a suggestive risk factor for LRIV.


Assuntos
Estudo de Associação Genômica Ampla , Influenza Humana , Humanos , Análise da Randomização Mendeliana , Eosinófilos , Influenza Humana/prevenção & controle , Biomarcadores , Polimorfismo de Nucleotídeo Único
8.
J Med Virol ; 95(7): e28912, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403888

RESUMO

Influenza A(H3N8) viruses first emerged in humans in 2022, but their public health risk has not been evaluated. Here, we systematically investigated the biological features of avian and human isolated H3N8 viruses. The human-origin H3N8 viruses exhibited dual receptor binding profiles but avian-origin H3N8 viruses bound to avian type (sialic acid α2, 3) receptors only. All H3N8 viruses were sensitive to the antiviral drug oseltamivir. Although H3N8 viruses showed lower virulence than the 2009 pandemic H1N1 (09pdmH1N1) viruses, they induced comparable infectivity in mice. More importantly, the human population is naïve to H3N8 virus infection and current seasonal vaccination is not protective. Therefore, the threat of influenza A(H3N8) viruses should not be underestimated. Any variations should be monitored closely and their effect should be studied in time for the pandemic potential preparedness purpose.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Aves , China/epidemiologia
9.
BMC Infect Dis ; 23(1): 211, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024804

RESUMO

BACKGROUND: The influenza viruses pose a threat to human health and medical services, and vaccination is an important way to prevent infection. However, the effectiveness of influenza vaccines is affected by various aspects. This study aimed to explore factors related to the immune response to influenza vaccines. METHODS: The study was conducted from September 2019 to September 2021, and a total of 593 volunteers were recruited from the Center for Disease Control and Prevention in 3 provinces in China. The hemagglutination inhibition assay was used to measure antibody levels. The Chi-square test, multivariable logistic regression analysis, and sum-rank test were used to analyze the factors associated with influenza vaccine immune response. RESULTS: The Chi-square test showed that seroconversion rates and response rate were associated with age group, vaccination history, chronic conditions, the frequency of colds, and region (P < 0.05). The multivariable logistic regression analysis showed that age was an important factor that affected participants' seroconversion rates for A/H1N1, A/H3N2, B/Victoria, and response status (18-64 vs. ≤5: OR = 2.77, P < 0.001; ≥65 vs. ≤5: OR = 0.38, P = 0.01; 18-64 vs. ≤5: OR = 2.64, P = 0.03). Vaccination history was also an affecting factor for A/H1N1, B/Victoria, and response status (yes vs. no: OR = 0.4 / 0.44 / 0.25, P < 0.001). The frequency of colds and chronic conditions were also affecting factors for participants' seroconversion rates and response levels to different degrees. The sum-rank test showed that the fold changes for A/H1N1, B/Victoria, and B/Yamagata were associated with age group and vaccination history (P < 0.01). The fold changes for A/H3N2 were associated with the frequency of colds (P < 0.05), and those for B/Victoria were associated with gender and chronic conditions (P < 0.05). CONCLUSIONS: Vaccination history, age, health condition, and frequency of colds were important factors affecting the seroconversion rate of the influenza vaccine in human. There is a need for developing optimized vaccination strategies for vulnerable groups to improve the efficacy of influenza vaccines in human.


Assuntos
Resfriado Comum , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Vírus da Influenza B , Vírus da Influenza A Subtipo H3N2 , Vacinas de Produtos Inativados , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Imunogenicidade da Vacina
10.
Proc Natl Acad Sci U S A ; 117(29): 17204-17210, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32601207

RESUMO

Pigs are considered as important hosts or "mixing vessels" for the generation of pandemic influenza viruses. Systematic surveillance of influenza viruses in pigs is essential for early warning and preparedness for the next potential pandemic. Here, we report on an influenza virus surveillance of pigs from 2011 to 2018 in China, and identify a recently emerged genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 virus, which bears 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes and has been predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses bind to human-type receptors, produce much higher progeny virus in human airway epithelial cells, and show efficient infectivity and aerosol transmission in ferrets. Moreover, low antigenic cross-reactivity of human influenza vaccine strains with G4 reassortant EA H1N1 virus indicates that preexisting population immunity does not provide protection against G4 viruses. Further serological surveillance among occupational exposure population showed that 10.4% (35/338) of swine workers were positive for G4 EA H1N1 virus, especially for participants 18 y to 35 y old, who had 20.5% (9/44) seropositive rates, indicating that the predominant G4 EA H1N1 virus has acquired increased human infectivity. Such infectivity greatly enhances the opportunity for virus adaptation in humans and raises concerns for the possible generation of pandemic viruses.


Assuntos
Genes Virais , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , China , Reações Cruzadas , Células Epiteliais/virologia , Variação Genética , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Influenza Humana/imunologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Pandemias , Filogenia , Prevalência , Vírus Reordenados/genética , Estudos Soroepidemiológicos , Suínos
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1204-1210, 2023 Oct 10.
Artigo em Zh | MEDLINE | ID: mdl-37730218

RESUMO

OBJECTIVE: To analyze the characteristics of genetic variants among children with refractory epilepsy (RE). METHODS: One hundred and seventeen children with RE who had presented at the Affiliated Jinhua Hospital of Zhejiang University School of Medicine from January 1, 2018 to November 21, 2019 were selected as the study subjects. The children were divided into four groups according to their ages of onset: < 1 year old, 1 ~ 3 years old, 3 ~ 12 years old, and >= 12 years old. Clinical data and results of trio-whole exome sequencing were retrospectively analyzed. RESULTS: In total 67 males and 50 females were included. The age of onset had ranged from 4 days to 14 years old. Among the 117 patients, 33 (28.21%) had carried pathogenic or likely pathogenic variants. The detection rates for the < 1 year old, 1 ~ 3 years old and >= 3 years old groups were 53.85% (21/39), 12.00% (3/25) and 16.98% (9/53), respectively, with a significant difference among the groups (χ2 = 19.202, P < 0.001). The detection rates for patients with and without comorbidities were 33.33% (12/36) and 25.93% (21/81), respectively (χ2 = 0.359, P = 0.549). Among the 33 patients carrying genetic variants, 27 were single nucleotide polymorphisms (SNPs) or insertion/deletions (InDels), and 6 were copy number variations (CNVs). The most common mutant genes were PRRT2 (15.15%, 5/33) and SCN1A (12.12%, 4/33). Among children carrying genetic variants, 72.73% (8/11) had attained clinical remission after adjusting the medication according to the references. CONCLUSION: 28.21% of RE patients have harbored pathogenic or likely pathogenic variants or CNVs. The detection rate is higher in those with younger age of onset. PRRT2 and SCN1A genes are more commonly involved. Adjusting medication based on the types of affected genes may facilitate improvement of the remission rate.


Assuntos
Variações do Número de Cópias de DNA , Epilepsia Resistente a Medicamentos , Lactente , Feminino , Masculino , Humanos , Criança , Recém-Nascido , Pré-Escolar , Epilepsia Resistente a Medicamentos/genética , Estudos Retrospectivos , Polimorfismo de Nucleotídeo Único
12.
Emerg Infect Dis ; 28(7): 1332-1344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476714

RESUMO

The recent rise in the frequency of influenza A(H5N6) infections in China has raised serious concerns about whether the risk for human infection has increased. We surveyed epidemiologic, clinical, and genetic data of human infections with A(H5N6) viruses. Severe disease occurred in 93.8% of cases, and the fatality rate was 55.4%. Median patient age was 51 years. Most H5N6 hemagglutinin (HA) genes in human isolates in 2021 originated from subclade 2.3.4.4b; we estimated the time to most recent common ancestor as June 16, 2020. A total of 13 genotypes with HA genes from multiple subclades in clade 2.3.4.4 were identified in human isolates. Of note, 4 new genotypes detected in 2021 were the major causes of increased H5N6 virus infections. Mammalian-adapted mutations were found in HA and internal genes. Although we found no evidence of human-to-human transmission, continuous evolution of H5N6 viruses may increase the risk for human infections.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , China/epidemiologia , Humanos , Mamíferos , Pessoa de Meia-Idade , Filogenia , Vírus Reordenados/genética
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(10): 1116-1119, 2022 Oct 10.
Artigo em Zh | MEDLINE | ID: mdl-36184095

RESUMO

OBJECTIVE: To explore the genetic etiology of a child with microcephaly-cortical blind syndrome. METHODS: Clinical data of the child was collected. The child and her parents were subjected to whole exome sequencing (WES). Candidate variants were validated by Sanger sequencing. RESULTS: WES revealed that the child has harbored compound heterozygous variants c.1051C>T and c.609delA of the DIAPH1 gene. CONCLUSION: The compound heterozygous variation c.1051C>T (p.R351X) and c.609delA (p.E203Efs*19) of the DIAPH1 gene probably underlay the microcephaly-cortical blindness syndrome in this child.


Assuntos
Microcefalia , Cegueira/genética , Criança , Feminino , Forminas/genética , Testes Genéticos , Humanos , Microcefalia/genética , Mutação , Linhagem , Sequenciamento do Exoma
14.
Lancet ; 395(10224): 565-574, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32007145

RESUMO

BACKGROUND: In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. METHODS: We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. FINDINGS: The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. INTERPRETATION: 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. FUNDING: National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Genoma Viral , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Receptores Virais/metabolismo , Betacoronavirus/metabolismo , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , China/epidemiologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , DNA Viral/genética , Reservatórios de Doenças/virologia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Filogenia , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , SARS-CoV-2 , Alinhamento de Sequência
15.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996432

RESUMO

Genetic reassortments occurred continuously among multiple subtypes or genotypes of influenza viruses prevalent in pigs. Of note, some reassortant viruses bearing the internal genes of the 2009 pandemic H1N1 (2009/H1N1) virus sporadically caused human infection, which highlights their potential threats to human public health. In this study, we performed phylogenetic analysis on swine influenza viruses (SIVs) circulating in Liaoning Province, China. A total of 22 viruses, including 18 H1N1 and 4 H1N2 viruses, were isolated from 5,750 nasal swabs collected from pigs in slaughterhouses from 2014 to 2016. H1N1 viruses formed four genotypes, which included Eurasian avian-like H1N1 (EA H1N1) and double/triple reassortant H1N1 derived from EA H1N1, 2009/H1N1, and triple reassortant H1N2 (TR H1N2) viruses. H1N1 SIVs with different genotypes and even those within the same genotypes represented different pathogenicities in mice. We further characterized two naturally isolated H1N1 SIVs that had similar viral genomes but differed substantially in their virulence in mice and found that a single amino acid at position 431 in the basic polymerase 2 (PB2) protein significantly affected the viral replication capacity and virulence of these two viruses. Taken together, our findings revealed the diverse genomic origins and virulence of the SIVs prevalent in Liaoning Province during 2014 to 2016, which highlights that continuous surveillance is essential to monitor the evolution of SIVs. We identified a naturally occurring amino acid mutation in the PB2 protein of H1N1 SIVs that impacts the viral replication and virulence in mice by altering the viral polymerase activity.IMPORTANCE The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses.


Assuntos
Aminoácidos/genética , Genótipo , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Vírus Reordenados/genética , Doenças dos Suínos/virologia , Animais , China , Modelos Animais de Doenças , Feminino , Genes Virais/genética , Genoma Viral , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N2/genética , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Análise de Sequência de Proteína , Suínos , Virulência/genética , Replicação Viral , Sequenciamento Completo do Genoma
16.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32611751

RESUMO

Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Fenótipo , Replicação Viral/genética , Animais , Ásia , China , Modelos Animais de Doenças , Feminino , Variação Genética , Humanos , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Humana/imunologia , Influenza Humana/transmissão , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Vietnã
17.
Bioinformatics ; 36(10): 3251-3253, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049310

RESUMO

MOTIVATION: Newly emerging influenza viruses keep challenging global public health. To evaluate the potential risk of the viruses, it is critical to rapidly determine the phenotypes of the viruses, including the antigenicity, host, virulence and drug resistance. RESULTS: Here, we built FluPhenotype, a one-stop platform to rapidly determinate the phenotypes of the influenza A viruses. The input of FluPhenotype is the complete or partial genomic/protein sequences of the influenza A viruses. The output presents five types of information about the viruses: (i) sequence annotation including the gene and protein names as well as the open reading frames, (ii) potential hosts and human-adaptation-associated amino acid markers, (iii) antigenic and genetic relationships with the vaccine strains of different HA subtypes, (iv) mammalian virulence-related amino acid markers and (v) drug resistance-related amino acid markers. FluPhenotype will be a useful bioinformatic tool for surveillance and early warnings of the newly emerging influenza A viruses. AVAILABILITY AND IMPLEMENTATION: It is publicly available from: http://www.computationalbiology.cn : 18888/IVEW. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Sequência de Aminoácidos , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Vírus da Influenza A/genética
18.
Virus Genes ; 57(2): 164-171, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33606171

RESUMO

Influenza vaccines represent the most effective preventive strategy to control influenza virus infections; however, adaptive mutations frequently occur in the hemagglutinin (HA) glycoprotein during the preparation of candidate vaccine virus and production of vaccine in embryonated eggs. In our previous study, we constructed candidate vaccine virus (HA-R) to match the highly pathogenic avian influenza H7N9 viruses A/Guangdong/17SF003/2016 as part of a pandemic preparedness program. However, mixed amino acids (R, G, and I) were presented at position 220 (H3 numbering) in HA during passage in embryonated eggs. The residue at position 220 is located close to the receptor-binding site and the biological characteristics of this site remain to be elucidated. Therefore, in this study, using reverse genetics, we constructed two viruses carrying the single substitution in position 220 of HA (HA-G and HA-I) and evaluated the biological effects of substitution (R with G/I) on receptor binding, neuraminidase (NA) activity, growth characteristics, genetic stability, and antigenicity. The results revealed both mutant viruses exhibited lower HA binding affinities to two receptor types (sialic acid in alpha2,3- and alpha2,6-linkage to galactose, P < 0.001) and significant better growth characteristics compared to HA-R in two cells. Moreover, under similar NA enzymatic activity, the two mutant viruses eluted more easily from agglutinated erythrocytes than HA-R. Collectively, these results implied the balance of HA and NA in mutant viruses was a stronger determinant of viral growth than the individual amino acid in the HA position 220 in HA-R without strong binding between HA and sialylated receptors. Importantly, both the substitutions conferred altered antigenicity to the mutant viruses. In conclusion, amino acid substitutions at position 220 can substantially influence viral biological properties.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Substituição de Aminoácidos , Animais , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Mutagênese , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Genética Reversa
19.
Rev Med Virol ; 30(3): e2099, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32135031

RESUMO

The panzootic caused by A/goose/Guangdong/1/96-lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human-to-human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human-to-human transmissibility and impact on human health should such human-to-human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.


Assuntos
Vírus da Influenza A Subtipo H5N2/fisiologia , Influenza Aviária/transmissão , Influenza Humana/transmissão , Doenças das Aves Domésticas/transmissão , Animais , Humanos , Vírus da Influenza A Subtipo H5N2/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pandemias , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia
20.
Nature ; 523(7559): 217-20, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26053121

RESUMO

Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.


Assuntos
Variação Antigênica , Vírus da Influenza A/genética , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Fatores Etários , Saúde Global , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza B/classificação , Filogenia , Filogeografia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA