Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 17(10): 2775-2790, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33543739

RESUMO

A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and a taurine-modified MgAL layered double hydroxide (T-LDH) as the nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed using conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility dependent on the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, two separate vitrification mechanisms were also found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content.

2.
Nanotechnology ; 32(32)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33906165

RESUMO

BiVO4, a visible-light response photocatalyst, has shown tremendous potential because of abundant raw material sources, good stability and low cost. There exist some limitations for further applicaitions due to poor capability to separate electron-hole pairs. In fact, a single-component modification strategy is barely adequate to obtain highly efficient photocatalytic performance. In this work, P substituted some of the V atoms from VO4oxoanions, namely P was doped into the V sites in the host lattice of BiVO4by a hydrothermal route. Meanwhile, Ag as an attractive and efficient electron-cocatalyst was selectively modified on the (010) facet of BiVO4nanosheets via facile photo-deposition. As a result, the obtained dually modified BiVO4sheets exhibited enhanced photocatalytic degradation property of methylene blue (MB). In detail, photocatalytic rate constant (k) was 2.285 min-1g-1, which was 2.78 times higher than pristine BiVO4nanosheets. Actually, P-doping favored the formation of O vacancies, led to more charge carriers, and facilitated photocatalytic reaction. On the other hand, metallic Ag loaded on (010) facet effectively transferred photogenerated electrons, which consequently helped electron-hole pairs separation. The present work may enlighten new thoughts for smart design and controllable synthesis of highly efficient photocatalytic materials.

3.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361823

RESUMO

In recent years, nanocarbon materials have attracted the interest of researchers due to their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced thermal stability and mechanical properties compared with traditional flame retardant composites. In this article, the unique structural features of nanocarbon-based materials and their use in flame retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism of nanocarbon materials is described. The main discussions include material components such as graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and film-matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant in composites, but also play an important role in many aspects such as mechanical reinforcement. Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-retardant polymeric materials are briefly discussed.

4.
Nanotechnology ; 31(6): 065601, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31618714

RESUMO

Aiming to investigate the influence of pore property of mesoporous material on thermal degradation and fire behavior of polystyrene (PS), the ultrafine iron derivatives were uniformly grown on the interior wall of SBA-15 via the coordination-induced assembly by bioinspired polydopamine (PDA). The resultant SBA-15@PDA@Fe was verified by various characterizations with the dominant component of FeOOH. Compared with PS composites with SBA-15, PS composites with SBA-15@PDA@Fe revealed the notably divergent alteration in thermal and thermal-oxidation degradation behavior, which was determined by the changed pore property. The iron derivatives in SBA-15 mesopores possessed the stronger affinity to aerobic volatiles than anaerobic volatiles (via π-π coordination), which inhibited the release of oxidatively decomposed products and enhanced thermal-oxidation stability. In addition, SBA-15@PDA@Fe was capable to preferentially improve limiting oxygen index, accompanied by the decrease of smoke production through suppressing smoke precursors. The glass transition temperature (T g) of PS/SBA-15 was slightly increased via the bioinspired modification.

5.
BMC Evol Biol ; 19(1): 63, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808310

RESUMO

BACKGROUND: The plastid is a semiautonomous organelle with its own genome. Plastid genomes have been widely used as models for studying phylogeny, speciation and adaptive evolution. However, most studies focus on comparisons of plastid genome evolution at high taxonomic levels, and comparative studies of the process of plastome evolution at the infrageneric or intraspecific level remain elusive. Holcoglossum is a small genus of Orchidaceae, consisting of approximately 20 species of recent radiation. This made it an ideal group to explore the plastome mutation mode at the infrageneric or intraspecific level. RESULTS: In this paper, we reported 15 complete plastid genomes from 12 species of Holcoglossum and 1 species of Vanda. The plastid genomes of Holcoglossum have a total length range between 145 kb and 148 kb, encoding a set of 102 genes. The whole set of ndh-gene families in Holcoglossum have been truncated or pseudogenized. Hairpin inversion in the coding region of the plastid gene ycf2 has been found. CONCLUSIONS: Using a comprehensive comparative plastome analysis, we found that all the indels between different individuals of the same species resulted from the copy number variation of the short repeat sequence, which may be caused by replication slippage. Annotation of tandem repeats shows that the variation introduced by tandem repeats is widespread in plastid genomes. The hairpin inversion found in the plastid gene ycf2 occurred randomly in the Orchidaceae.


Assuntos
Genomas de Plastídeos , Orchidaceae/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Mutação INDEL , Fases de Leitura Aberta , Orchidaceae/classificação , Filogenia , Plastídeos , Sequências Repetitivas de Ácido Nucleico
6.
Chem Commun (Camb) ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39444330

RESUMO

We have successfully constructed a machine learning framework to predict the important properties of MOF-loaded (metal-organic framework) polymer composites. Our classification models have obtained promising predictive performance. The analysis of feature importance has revealed the relationship between MOFs and the properties of polymer composites, guiding the research focus for MOF's application in the fire safety field.

7.
ACS Appl Mater Interfaces ; 16(38): 51333-51345, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39269425

RESUMO

A novel multidimensional electromagnetic wave-absorbing material was developed by combining carboxylated carbon nanotubes (CNT) with graphene oxide (GO) through multidimensional design, and cobalt/nickel-based metal organic frameworks (Co/Ni-MOF) were subsequently loaded onto the GO surface via its rich functional groups to form the composite absorbing material CNT-rGO-Co/Ni-MOF. Incorporating 25 wt % of CNT-rGO-Co/Ni-MOF into the paraffin matrix led to a remarkable RLmin value of -43 dB at 16.4 GHz, with an effective absorbing bandwidth (EAB) exceeding 4 GHz, all within a thickness of just 1.5 mm, showcasing its "lightweight, broadband, and high efficiency" characteristics. The exceptional electromagnetic wave absorption performance was attributed to multi-interface polarization loss, resistance loss, and magnetic medium loss. Furthermore, when incorporating 10 wt % of CNT-rGO-Co/Ni-MOF, the heat release capacity and peak heat release rate of EP/CNT-rGO-Co/Ni-MOF10 decreased by 59.2 and 52.6%, respectively.

8.
Polymers (Basel) ; 16(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257057

RESUMO

In this work, biobased rigid polyurethane foams (PUFs) were developed with the aim of achieving thermal and fireproofing properties that can compete with those of the commercially available products. First, the synthesis of a biopolyol from a wood residue by means of a scaled-up process with suitable yield and reaction conditions was carried out. This biopolyol was able to substitute completely the synthetic polyols that are typically employed within a polyurethane formulation. Different formulations were developed to assess the effect of two flame retardants, namely, polyhedral oligomeric silsesquioxane (POSS) and amino polyphosphate (APP), in terms of their thermal properties and degradation and their fireproofing mechanism. The structure and the thermal degradation of the different formulations was evaluated via Fourier Transformed Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Likewise, the performance of the different PUF formulations was studied and compared to that of an industrial PUF. From these results, it can be highlighted that the addition of the flame retardants into the formulation showed an improvement in the results of the UL-94 vertical burning test and the LOI. Moreover, the fireproofing performance of the biobased formulations was comparable to that of the industrial one. In addition to that, it can be remarked that the biobased formulations displayed an excellent performance as thermal insulators (0.02371-0.02149 W·m-1·K-1), which was even slightly higher than that of the industrial one.

9.
Materials (Basel) ; 17(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793331

RESUMO

The development of sustainable flame retardants is gaining momentum due to their enhanced safety attributes and environmental compatibility. One effective strategy is to use waste materials as a primary source of chemical components, which can help mitigate environmental issues associated with traditional flame retardants. This paper reviews recent research in flame retardancy for waste flame retardants, categorizing them based on waste types like industrial, food, and plant waste. The paper focuses on recent advancements in this area, focusing on their impact on the thermal stability, flame retardancy, smoke suppression, and mechanical properties of polymeric materials. The study also provides a summary of functionalization methodologies used and key factors involved in modifying polymer systems. Finally, their major challenges and prospects for the future are identified.

10.
Int J Biol Macromol ; 262(Pt 1): 129363, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244743

RESUMO

The development of biobased fire-safe thermosets with recyclability heralds the switch for a transition towards a circular economy. In this framework, we introduced a novel high-performance bio-epoxy vitrimer (named GVD), which was fabricated by forming a crosslinking network between bio-epoxy glycerol triglycidyl ether (Gte), varying amounts of reactive flame-retardant agent 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) (0-7 wt%) and a vanillin-based hardener (VA) with imine bonds. For instance, the epoxy vitrimer GVD5, featuring a DOPO content of 5 wt%, achieved a V-0 rating in the vertical burning test (UL-94) and obtained a limiting oxygen index (LOI) value of 31 %, surpassing the performance of pristine epoxy. Furthermore, the peak heat release rate and total heat release of GVD5 were reduced by 38.2 % and 26.3 %, respectively, compared to pristine epoxy. The GVD vitrimers further demonstrated exceptional reprocessability and recyclability, attributed to the presence of dynamic imine bonds within the topological crosslinking network. Remarkably, the epoxy vitrimers maintained the mechanical properties of the parent epoxy. Therefore, this work provides a facile strategy for fabricating high-performance and multi-functional bio-epoxy thermosets.


Assuntos
Resinas Epóxi , Retardadores de Chama , Éteres , Etil-Éteres , Iminas
11.
Carbohydr Polym ; 341: 122313, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876722

RESUMO

ß-Cyclodextrin (ß-CD) with a cage-like supramolecular structure possesses the hydrophobic internal ring and external hydroxyl groups, which are beneficial for intramolecular interactions known as "host-guest" chemistry. This study presents a ß-CD-based three-functions-in-one and host-guest fire retardant (ßCD-MOF@Schiff base), which incorporates self-crosslinking Schiff base into its cavity and modification of its surface by metal-organic framework (MOF). With the presence of 5 wt% of ßCD-MOF@Schiff base, the LOI value of PLA composites increased to 29 % and showed 15 %, 17 % and 62 % reductions in peak heat release rate (pHRR), total heat release (THR), and the yield of hazard gas carbon monoxide, respectively. The mode action of FR on fire retardation of PLA showed that the FR promoted the char formation with higher thermal stability and graphitization, and modified the decomposition path of PLA. Additionally, the PLA composites exhibited enhanced UV resistance in the UVA and UVB areas with improved UV absorbance and the UPF values improving and doubling. This work develops a new approach to preparing biodegradable FR, which simultaneously endows fire safety and anti-UV properties for PLA.

12.
ACS Appl Mater Interfaces ; 16(31): 40313-40325, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052020

RESUMO

Laser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles. The composite electrode is fabricated by laser irradiation on a Kapton sheet to generate LIG material, followed by spray-coating with candle-soot nanoparticles and annealing. Materials characterization reveals that the annealing process enables a robust connection between the nanoparticles and the LIG materials and enhances nanoparticle graphitization. The prepared supercapacitor yields a maximum specific capacitance of 15.1 mF/cm2 at 0.1 mA/cm2, with a maximum energy density of 2.1 µWh/cm2 and a power density of 50 µW/cm2. Notably, the synergistic activity of candle soot and LIG surpasses the performances of previously reported LIG-based supercapacitors. Furthermore, the cyclic stability of the device demonstrates excellent capacitance retention of 80% and Coulombic efficiency of 100% over 10000 cycles.

13.
Int J Biol Macromol ; 259(Pt 1): 129158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176481

RESUMO

Today, building materials emit many hazardous gases in the event of a fire, causing great harm to human health and the environment. Therefore, it is of great significance to develop bio-based flame retardant materials and to realize preventive measures to reduce fires or their damage. In this work, we fabricated a novel multifunctional fire early-warning polylactic acid-based fabric (MFR-PBF) by coating MXene nanosheet, phytic acid @ furfurylamine (PA@FA) and ammonium polyphosphate (APP) via an eco-friendly layer-by-layer assembly method. MFR-PBF showed outstanding flame retardancy including a limiting oxygen index value of 35 % and better char formation capacity. More importantly, MFR-PBF exhibited sensitive fire early-warning capability (∼1 s) and excellent cyclic alarm stability (>15 cycles) due to the excellent semiconductor responsiveness (light and heat) and the significant catalytic char formation effect. Moreover, MFR-PBF is comfortable, flexible and strong enough to sew onto firefighter uniform to detect a variety of human motions, which can be monitored in the internet by using a LoRa emitter and a gateway. In addition, the controllable heating performance rendered MFR-PBF as a potential portable heater. This work provides new insights into the preparation and application of intelligent fire early-warning fabrics in the smart fire protection and Internet of Things.


Assuntos
Retardadores de Chama , Poliésteres , Humanos , Biomassa , Catálise , Gases
14.
Polymers (Basel) ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447467

RESUMO

In last years, the requirements for materials and devices have increased exponentially. Greater competitiveness; cost and weight reduction for structural materials; greater power density for electronic devices; higher design versatility; materials customizing and tailoring; lower energy consumption during the manufacturing, transport, and use; among others, are some of the most common market demands. A higher operational efficiency together with long service life claimed. Particularly, high thermally conductive in epoxy resins is an important requirement for numerous applications, including energy and electrical and electronic industry. Over time, these materials have evolved from traditional single-function to multifunctional materials to satisfy the increasing demands of applications. Considering the complex application contexts, this review aims to provide insight into the present state of the art and future challenges of thermally conductive epoxy composites with various functionalities. Firstly, the basic theory of thermally conductive epoxy composites is summarized. Secondly, the review provides a comprehensive description of five types of multifunctional thermally conductive epoxy composites, including their fabrication methods and specific behavior. Furthermore, the key technical problems are proposed, and the major challenges to developing multifunctional thermally conductive epoxy composites are presented. Ultimately, the purpose of this review is to provide guidance and inspiration for the development of multifunctional thermally conductive epoxy composites to meet the increasing demands of the next generation of materials.

15.
Int J Biol Macromol ; 250: 126127, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541480

RESUMO

Developing multifunctional biodegradable PLA with ignition delay, high efficient fire retardancy, and UV resistance properties is a challenging task owing to its high flammability, and mutually exclusive phenomenon between the latter two properties. In this work, we report a superior efficient synergistic action combining piperazine pyrophosphate (PAPP) and a Co based metal-organic framework (ZIF-67). Results illustrated that with merely 0.06 wt% ZIF-67, intumescent PLA containing 4.96 wt% PAPP reached UL-94 V0 rating. The PLA/4.9PAPP/0.1MOF sample possessed a limiting oxygen index (LOI) value at 33 %, exhibited a 28 % reduction in peak heat release rate (pHRR) and a 67 % increase in fire propagation index (FPI). Moreover, the presence MOF delayed the ignition time of PLA by 12 s due to the highly porous structure of MOF and its chemical heat-sink performance. Insightful reaction to fire mechanism in the condensed phase via TG-FTIR and Raman revealed that a crack free protective intumescent char layer with higher graphitization degree was formed, which effectively enhanced the barrier effect and minimize the heat and fuel transfer. In addition, the UV resistance of PLA composites is enhanced, remaining at and below 5 % transmittance in the UVA and UVB areas. This work provides a green production way of multifunctional degradable materials and broadens their application fields.

16.
ACS Sens ; 8(4): 1684-1692, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976959

RESUMO

Since the beginning of the COVID-19 pandemic, the use of face masks has become not only mandatory in several countries but also an acceptable approach for combating the pandemic. In the quest for designing an effective and useful face mask, triboelectric nanogenerators (TENGs) have been recently proposed. Novel functionalities are provided with the use of TENGs in face masks due to the induced triboelectrification generated by the exhaled and inhaled breath, allowing their use as an energy sensor. Nonetheless, within the face mask, the presence of nontextile plastics or other common triboelectric (TE) materials can be undesired. Herein, we propose the use of an all-fabric TENG (AF-TENG) with the use of high molecular weight polyethylene (UHMWPE) and cotton fabric as negative and positive triboelectric layers, respectively. With these materials, it is possible to detect the breathing of the patient, which in the case of not detecting a signal over a few minutes can trigger an alarm locally, providing valuable time. Also, in this article, we have sent breathing signals locally and remotely to distances up to 20 km via Wi-Fi and LoRa, the same as warning signals in the case of detecting anomalies. This work reveals the use of TENGs in smart face masks as an important tool to be used in difficult epidemiological periods to the general public, bringing much more comfort and relaxation to patients and elderly in today's society, and based on pristine eco-friendly materials.


Assuntos
COVID-19 , Máscaras , Idoso , Humanos , Apneia , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Polietileno
17.
J Colloid Interface Sci ; 643: 489-501, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37088052

RESUMO

The loading treatment of phosphorus flame retardants can mitigate their migration and plasticization effect. However, designing suitable carriers has remained a great challenge. Herein, two kinds of Co-based isomers, namely cobalt-cobalt layered double hydroxides (CoCo-LDH) and cobalt basic carbonate (CBC), were synthesized by employing ZIF-67 as a self-template, assemblied into two different nanostructures namely multi-yolk@shell CBC@CoCo-LDH (m-CBC@LDH) and solid CBC nanoparticles by facilely tuning the reaction time, which were employed as carriers, respectively. Subsequently, triphenyl phosphate (TPP)-loaded m-CBC@LDH (m-CBC-P@LDH) was prepared using TPP as the guest. The m-CBC@LDH with high specific surface area and hollow structure exhibited up to more than 30% of TPP loading. The peak of heat release rate and total heat release of polyurea composite blended with 5 wt% m-CBC-P@LDH reduced by 41.7% and 20.6% respectively, and the mechanical properties were less damaged. This work complements a feasible approach for preparation of metal-organic frameworks-derived flame retardant carriers.

18.
Int J Biol Macromol ; 253(Pt 3): 126466, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659494

RESUMO

Early fire detection is an efficient method to mitigate disastrous fire loss. However, developing smart low-temperature fire-warning sensors that better diminish fire hazards, especially those caused by household appliances, is still challenging. Herein, a salts-modified chitosan (salts-modified CS) based sensor with integrated fire-warning and humidity-monitoring capability is proposed using an easy assembling method. This sensor can respond to temperatures as low as 50 °C and a flame within 2 s quickly and detect relative humidity (RH) range above 50 % at 50 °C and 75 °C sensitively. This system can be reusable for multiple ignitions and works in high-humidity environments (>50 %). Furthermore, the comparison between different salts-modified CS films is carried out to elucidate the mechanism of the formation of electric current under the joint driven by temperature and humidity. Moreover, real-time temperature and RH monitoring can be achieved with a wireless transmission section. This design shows a promising approach for multifunctional CS-based sensors and paves a path to developing a new generation of smart fire-warning detectors.


Assuntos
Quitosana , Umidade , Sais , Temperatura , Temperatura Baixa
19.
ACS Appl Mater Interfaces ; 15(51): 59838-59853, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38105599

RESUMO

An unconventional P/N/Si-free fire safety of epoxy at an ultralow loading with a significantly improved mechanical robustness and toughness via a mere nanocomposite technique is a great challenge. To achieve the goal, a proof of concept is proposed associated with a hierarchical manipulation of catalysis-tailored FexSy ultrathin nanosheets on organic-layered double hydroxide (LDH-DBS@FexSy) toward the formation of porous piling structure via a self-sacrificing conversion of metal-organic framework. A sufficient characterization certified the targeted architecture and composition. A P/N/Si-free ultralow loading of 2 wt % LDH-DBS@FexSy (i.e., 0.6 wt % FexSy) imparted epoxy with UL-94 V-0 rating, a 36.1% reduction of peak heat release rate, as well as a pronounced fire-protection feature. A systematic contrastive investigation evidenced a time-dependent fire-shielding effect induced by a featured catalysis-tailored ultrafast charring behavior at the interface of epoxy and LDH nanosheets. Intriguingly, the tensile strength, impact strength, and flexural strength were simultaneously enhanced by 62.2, 185.4, and 62.9%, respectively, with a 0.6 wt % incorporation of FexSy hierarchy on the basis of a "root-soil"-inspired interfacial "interlocking" structure. In perspective, an integrated manipulation of an interface catalysis-tailored ultrafast charring and hierarchical "interlocking" construction offer an effective balance of the fire safety, mechanical robustness, and toughness of polymers.

20.
Langmuir ; 28(34): 12601-8, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22845883

RESUMO

Nanocomposites derived from poly(lactic acid) (PLA) and organically modified montmorillonite (oMMT) have been cross-linked by high-energy electrons in the presence of triallyl cyanurate (TAC). The morphology of untreated and cross-linked PLA/MMT nanocomposites was characterized by wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). This treatment can improve both the thermal stability and the glass-transition temperatures of the PLA nanocomposites (e.g., PLA-MMT-TAC 30kGy, 50kGy, and 70kGy) because of the formation of cross-linking structures in the nanocomposites that will considerably reduce the mobility of polymers. Interestingly, at relatively low irradiation doses (e.g., 30 and 50 kGy) a good balance between tensile strength and elongation at break for the PLA nanocomposites could be achieved. These mechanical properties are superior to those of pure PLA. Therefore, combining nanotechnology and electron beam cross-linking is a promising new method of simultaneously improving the mechanical properties (toughness and tensile strength) and thermal stability of PLA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA