Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 623(7987): 633-642, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938770

RESUMO

Trimethylation of histone H3 lysine 9 (H3K9me3) is crucial for the regulation of gene repression and heterochromatin formation, cell-fate determination and organismal development1. H3K9me3 also provides an essential mechanism for silencing transposable elements1-4. However, previous studies have shown that canonical H3K9me3 readers (for example, HP1 (refs. 5-9) and MPP8 (refs. 10-12)) have limited roles in silencing endogenous retroviruses (ERVs), one of the main transposable element classes in the mammalian genome13. Here we report that trinucleotide-repeat-containing 18 (TNRC18), a poorly understood chromatin regulator, recognizes H3K9me3 to mediate the silencing of ERV class I (ERV1) elements such as LTR12 (ref. 14). Biochemical, biophysical and structural studies identified the carboxy-terminal bromo-adjacent homology (BAH) domain of TNRC18 (TNRC18(BAH)) as an H3K9me3-specific reader. Moreover, the amino-terminal segment of TNRC18 is a platform for the direct recruitment of co-repressors such as HDAC-Sin3-NCoR complexes, thus enforcing optimal repression of the H3K9me3-demarcated ERVs. Point mutagenesis that disrupts the TNRC18(BAH)-mediated H3K9me3 engagement caused neonatal death in mice and, in multiple mammalian cell models, led to derepressed expression of ERVs, which affected the landscape of cis-regulatory elements and, therefore, gene-expression programmes. Collectively, we describe a new H3K9me3-sensing and regulatory pathway that operates to epigenetically silence evolutionarily young ERVs and exert substantial effects on host genome integrity, transcriptomic regulation, immunity and development.


Assuntos
Retrovirus Endógenos , Inativação Gênica , Histonas , Peptídeos e Proteínas de Sinalização Intracelular , Lisina , Retroelementos , Animais , Humanos , Camundongos , Cromatina/genética , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Retrovirus Endógenos/genética , Epigênese Genética , Perfilação da Expressão Gênica , Genoma/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Metilação , Domínios Proteicos , Retroelementos/genética , Sequências Repetidas Terminais/genética , Animais Recém-Nascidos , Linhagem Celular
2.
Nature ; 595(7868): 591-595, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163069

RESUMO

The development of cancer is intimately associated with genetic abnormalities that target proteins with intrinsically disordered regions (IDRs). In human haematological malignancies, recurrent chromosomal translocation of nucleoporin (NUP98 or NUP214) generates an aberrant chimera that invariably retains the nucleoporin IDR-tandemly dispersed repeats of phenylalanine and glycine residues1,2. However, how unstructured IDRs contribute to oncogenesis remains unclear. Here we show that IDRs contained within NUP98-HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias1,2, are essential for establishing liquid-liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. Notably, LLPS of NUP98-HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad 'super-enhancer'-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein3,4, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. Deeply sequenced Hi-C revealed that phase-separated NUP98-HOXA9 induces CTCF-independent chromatin loops that are enriched at proto-oncogenes. Together, this report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumourous transformation. As LLPS-competent molecules are frequently implicated in diseases1,2,4-7, this mechanism can potentially be generalized to many malignant and pathological settings.


Assuntos
Cromatina/genética , Proteínas de Homeodomínio/genética , Proteínas Intrinsicamente Desordenadas/genética , Neoplasias/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Translocação Genética , Animais , Carcinogênese , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Ativação Transcricional
3.
Mol Cell ; 72(2): 341-354.e6, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270106

RESUMO

Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.


Assuntos
Processamento Alternativo/genética , Carcinogênese/genética , Fatores de Transcrição Kruppel-Like/genética , Oncogenes/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética
4.
Trends Genet ; 38(5): 413-415, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35221113

RESUMO

Chromatin structure is critically involved in gene regulation and cell fate determination. How this structure is established and maintained in distinct, terminally differentiated cells remains elusive. Winick-Ng et al. address this puzzle by applying immunoGAM in different brain cell types and reveal cell type-specific chromatin topologies, long gene decompaction, and the involvement of transcription factors (TFs).


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217626

RESUMO

Acute myeloid leukemias (AMLs) with the NUP98-NSD1 or mixed lineage leukemia (MLL) rearrangement (MLL-r) share transcriptomic profiles associated with stemness-related gene signatures and display poor prognosis. The molecular underpinnings of AML aggressiveness and stemness remain far from clear. Studies with EZH2 enzymatic inhibitors show that polycomb repressive complex 2 (PRC2) is crucial for tumorigenicity in NUP98-NSD1+ AML, whereas transcriptomic analysis reveal that Kdm5b, a lysine demethylase gene carrying "bivalent" chromatin domains, is directly repressed by PRC2. While ectopic expression of Kdm5b suppressed AML growth, its depletion not only promoted tumorigenicity but also attenuated anti-AML effects of PRC2 inhibitors, demonstrating a PRC2-|Kdm5b axis for AML oncogenesis. Integrated RNA sequencing (RNA-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq), and Cleavage Under Targets & Release Using Nuclease (CUT&RUN) profiling also showed that Kdm5b directly binds and represses AML stemness genes. The anti-AML effect of Kdm5b relies on its chromatin association and/or scaffold functions rather than its demethylase activity. Collectively, this study describes a molecular axis that involves histone modifiers (PRC2-|Kdm5b) for sustaining AML oncogenesis.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/metabolismo , Animais , Carcinogênese , Perfilação da Expressão Gênica , Histona Desmetilases/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas Oncogênicas/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Ligação Proteica , Análise de Sequência de RNA/métodos
6.
J Biol Chem ; 299(1): 102739, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435197

RESUMO

Recent discovery of the ribosomal protein (RP) RPL11 interacting with and inhibiting the E3 ubiquitin ligase function of MDM2 established the RP-MDM2-p53 signaling pathway, which is linked to biological events, including ribosomal biogenesis, nutrient availability, and metabolic homeostasis. Mutations in RPs lead to a diverse array of phenotypes known as ribosomopathies in which the role of p53 is implicated. Here, we generated conditional RPL11-deletion mice to investigate in vivo effects of impaired RP expression and its functional connection with p53. While deletion of one Rpl11 allele in germ cells results in embryonic lethality, deletion of one Rpl11 allele in adult mice does not affect viability but leads to acute anemia. Mechanistically, we found RPL11 haploinsufficiency activates p53 in hematopoietic tissues and impedes erythroid precursor differentiation, resulting in insufficient red blood cell development. We demonstrated that reducing p53 dosage by deleting one p53 allele rescues RPL11 haploinsufficiency-induced inhibition of erythropoietic precursor differentiation and restores normal red blood cell levels in mice. Furthermore, blocking the RP-MDM2-p53 pathway by introducing an RP-binding mutation in MDM2 prevents RPL11 haploinsufficiency-caused p53 activation and rescues the anemia in mice. Together, these findings demonstrate that the RP-MDM2-p53 pathway is a critical checkpoint for RP homeostasis and that p53-dependent cell cycle arrest of erythroid precursors is the molecular basis for the anemia phenotype commonly associated with RP deficiency.


Assuntos
Anemia , Proteína Supressora de Tumor p53 , Animais , Camundongos , Anemia/genética , Haploinsuficiência , Mutação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Trends Genet ; 37(6): 547-565, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33494958

RESUMO

Modulation of chromatin structure and/or modification by Polycomb repressive complexes (PRCs) provides an important means to partition the genome into functionally distinct subdomains and to regulate the activity of the underlying genes. Both the enzymatic activity of PRC2 and its chromatin recruitment, spreading, and eviction are exquisitely regulated via interactions with cofactors and DNA elements (such as unmethylated CpG islands), histones, RNA (nascent mRNA and long noncoding RNA), and R-loops. PRC2-catalyzed histone H3 lysine 27 trimethylation (H3K27me3) is recognized by distinct classes of effectors such as canonical PRC1 and BAH module-containing proteins (notably BAHCC1 in human). These effectors mediate gene silencing by different mechanisms including phase separation-related chromatin compaction and histone deacetylation. We discuss recent advances in understanding the structural architecture of PRC2, the regulation of its activity and chromatin recruitment, and the molecular mechanisms underlying Polycomb-mediated gene silencing. Because PRC deregulation is intimately associated with the development of diseases, a better appreciation of Polycomb-based (epi)genomic regulation will have far-reaching implications in biology and medicine.


Assuntos
Cromatina/genética , Inativação Gênica/fisiologia , Histonas/metabolismo , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/genética , Alcinos , Animais , Cromatina/química , Cromatina/metabolismo , Histonas/genética , Humanos , Lisina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Vertebrados
8.
Blood ; 140(11): 1278-1290, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35639959

RESUMO

Peripheral T-cell lymphomas (PTCLs) are heterogenous T-cell neoplasms often associated with epigenetic dysregulation. We investigated de novo DNA methyltransferase 3A (DNMT3A) mutations in common PTCL entities, including angioimmunoblastic T-cell lymphoma and novel molecular subtypes identified within PTCL-not otherwise specified (PTCL-NOS) designated as PTCL-GATA3 and PTCL-TBX21. DNMT3A-mutated PTCL-TBX21 cases showed inferior overall survival (OS), with DNMT3A-mutated residues skewed toward the methyltransferase domain and dimerization motif (S881-R887). Transcriptional profiling demonstrated significant enrichment of activated CD8+ T-cell cytotoxic gene signatures in the DNMT3A-mutant PTCL-TBX21 cases, which was further validated using immunohistochemistry. Genomewide methylation analysis of DNMT3A-mutant vs wild-type (WT) PTCL-TBX21 cases demonstrated hypomethylation in target genes regulating interferon-γ (IFN-γ), T-cell receptor signaling, and EOMES (eomesodermin), a master transcriptional regulator of cytotoxic effector cells. Similar findings were observed in a murine model of PTCL with Dnmt3a loss (in vivo) and further validated in vitro by ectopic expression of DNMT3A mutants (DNMT3A-R882, -Q886, and -V716, vs WT) in CD8+ T-cell line, resulting in T-cell activation and EOMES upregulation. Furthermore, stable, ectopic expression of the DNMT3A mutants in primary CD3+ T-cell cultures resulted in the preferential outgrowth of CD8+ T cells with DNMT3AR882H mutation. Single-cell RNA sequencing(RNA-seq) analysis of CD3+ T cells revealed differential CD8+ T-cell subset polarization, mirroring findings in DNMT3A-mutated PTCL-TBX21 and validating the cytotoxic and T-cell memory transcriptional programs associated with the DNMT3AR882H mutation. Our findings indicate that DNMT3A mutations define a cytotoxic subset in PTCL-TBX21 with prognostic significance and thus may further refine pathological heterogeneity in PTCL-NOS and suggest alternative treatment strategies for this subset.


Assuntos
Interferon gama , Linfoma de Células T Periférico , Animais , Interferon gama/genética , Linfoma de Células T Periférico/patologia , Metiltransferases/genética , Camundongos , Mutação , Prognóstico , Receptores de Antígenos de Linfócitos T/genética
9.
Nature ; 554(7692): 387-391, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414941

RESUMO

DNA methylation by de novo DNA methyltransferases 3A (DNMT3A) and 3B (DNMT3B) at cytosines is essential for genome regulation and development. Dysregulation of this process is implicated in various diseases, notably cancer. However, the mechanisms underlying DNMT3 substrate recognition and enzymatic specificity remain elusive. Here we report a 2.65-ångström crystal structure of the DNMT3A-DNMT3L-DNA complex in which two DNMT3A monomers simultaneously attack two cytosine-phosphate-guanine (CpG) dinucleotides, with the target sites separated by 14 base pairs within the same DNA duplex. The DNMT3A-DNA interaction involves a target recognition domain, a catalytic loop, and DNMT3A homodimeric interface. Arg836 of the target recognition domain makes crucial contacts with CpG, ensuring DNMT3A enzymatic preference towards CpG sites in cells. Haematological cancer-associated somatic mutations of the substrate-binding residues decrease DNMT3A activity, induce CpG hypomethylation, and promote transformation of haematopoietic cells. Together, our study reveals the mechanistic basis for DNMT3A-mediated DNA methylation and establishes its aetiological link to human disease.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA/química , DNA/metabolismo , Sítios de Ligação , Proliferação de Células , Ilhas de CpG/genética , Cristalografia por Raios X , DNA/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Nucleic Acids Res ; 50(19): 10929-10946, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36300627

RESUMO

Enhancer of Zeste Homolog 2 (EZH2) and androgen receptor (AR) are crucial chromatin/gene regulators involved in the development and/or progression of prostate cancer, including advanced castration-resistant prostate cancer (CRPC). To sustain prostate tumorigenicity, EZH2 establishes non-canonical biochemical interaction with AR for mediating oncogene activation, in addition to its canonical role as a transcriptional repressor and enzymatic subunit of Polycomb Repressive Complex 2 (PRC2). However, the molecular basis underlying non-canonical activities of EZH2 in prostate cancer remains elusive, and a therapeutic strategy for targeting EZH2:AR-mediated oncogene activation is also lacking. Here, we report that a cryptic transactivation domain of EZH2 (EZH2TAD) binds both AR and AR spliced variant 7 (AR-V7), a constitutively active AR variant enriched in CRPC, mediating assembly and/or recruitment of transactivation-related machineries at genomic sites that lack PRC2 binding. Such non-canonical targets of EZH2:AR/AR-V7:(co-)activators are enriched for the clinically relevant oncogenes. We also show that EZH2TAD is required for the chromatin recruitment of EZH2 to oncogenes, for EZH2-mediated oncogene activation and for CRPC growth in vitro and in vivo. To completely block EZH2's multifaceted oncogenic activities in prostate cancer, we employed MS177, a recently developed proteolysis-targeting chimera (PROTAC) of EZH2. Strikingly, MS177 achieved on-target depletion of both EZH2's canonical (EZH2:PRC2) and non-canonical (EZH2TAD:AR/AR-V7:co-activators) complexes in prostate cancer cells, eliciting far more potent antitumor effects than the catalytic inhibitors of EZH2. Overall, this study reports a previously unappreciated requirement for EZH2TAD for mediating EZH2's non-canonical (co-)activator recruitment and gene activation functions in prostate cancer and suggests EZH2-targeting PROTACs as a potentially attractive therapeutic for the treatment of aggressive prostate cancer that rely on the circuits wired by EZH2 and AR.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Humanos , Masculino , Linhagem Celular Tumoral , Cromatina/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Oncogenes , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional , Isoformas de Proteínas
11.
J Am Chem Soc ; 145(14): 8176-8188, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976643

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) plays important roles in gene regulation, largely through its ability to dimethylate lysine 36 of histone 3 (H3K36me2). Despite aberrant activity of NSD2 reported in numerous cancers, efforts to selectively inhibit the catalytic activity of this protein with small molecules have been unsuccessful to date. Here, we report the development of UNC8153, a novel NSD2-targeted degrader that potently and selectively reduces the cellular levels of both NSD2 protein and the H3K36me2 chromatin mark. UNC8153 contains a simple warhead that confers proteasome-dependent degradation of NSD2 through a novel mechanism. Importantly, UNC8153-mediated reduction of H3K36me2 through the degradation of NSD2 results in the downregulation of pathological phenotypes in multiple myeloma cells including mild antiproliferative effects in MM1.S cells containing an activating point mutation and antiadhesive effects in KMS11 cells harboring the t(4;14) translocation that upregulates NSD2 expression.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Regulação para Baixo
12.
Cancer Treat Res ; 190: 273-320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113005

RESUMO

Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.


Assuntos
Neoplasias , Complexo Repressor Polycomb 2 , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Cromatina , Neoplasias/genética
13.
Nucleic Acids Res ; 49(8): 4441-4455, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33823544

RESUMO

Trimethylation of histone H3 lysine 27 (H3K27me3) is important for gene silencing and imprinting, (epi)genome organization and organismal development. In a prevalent model, the functional readout of H3K27me3 in mammalian cells is achieved through the H3K27me3-recognizing chromodomain harbored within the chromobox (CBX) component of canonical Polycomb repressive complex 1 (cPRC1), which induces chromatin compaction and gene repression. Here, we report that binding of H3K27me3 by a Bromo Adjacent Homology (BAH) domain harbored within BAH domain-containing protein 1 (BAHD1) is required for overall BAHD1 targeting to chromatin and for optimal repression of the H3K27me3-demarcated genes in mammalian cells. Disruption of direct interaction between BAHD1BAH and H3K27me3 by point mutagenesis leads to chromatin remodeling, notably, increased histone acetylation, at its Polycomb gene targets. Mice carrying an H3K27me3-interaction-defective mutation of Bahd1BAH causes marked embryonic lethality, showing a requirement of this pathway for normal development. Altogether, this work demonstrates an H3K27me3-initiated signaling cascade that operates through a conserved BAH 'reader' module within BAHD1 in mammals.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Acetilação , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas Cromossômicas não Histona/genética , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Células HEK293 , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas do Grupo Polycomb/genética , Domínios Proteicos
14.
Nucleic Acids Res ; 49(9): 4971-4988, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33849067

RESUMO

Castration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fosfofrutoquinase-1 Tipo C/genética , Neoplasias de Próstata Resistentes à Castração/genética , Fator de Transcrição YY1/metabolismo , Animais , Carcinogênese , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Glicólise , Células HEK293 , Humanos , Masculino , Camundongos SCID , Fosfofrutoquinase-1 Tipo C/fisiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição/metabolismo , Ativação Transcricional , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/fisiologia
15.
Proc Natl Acad Sci U S A ; 117(31): 18439-18447, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675241

RESUMO

In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Heterocromatina/metabolismo , Histonas/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Heterocromatina/genética , Histonas/química , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional
16.
Blood ; 136(1): 11-23, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32276273

RESUMO

E2A, a basic helix-loop-helix transcription factor, plays a crucial role in determining tissue-specific cell fate, including differentiation of B-cell lineages. In 5% of childhood acute lymphoblastic leukemia (ALL), the t(1,19) chromosomal translocation specifically targets the E2A gene and produces an oncogenic E2A-PBX1 fusion protein. Although previous studies have shown the oncogenic functions of E2A-PBX1 in cell and animal models, the E2A-PBX1-enforced cistrome, the E2A-PBX1 interactome, and related mechanisms underlying leukemogenesis remain unclear. Here, by unbiased genomic profiling approaches, we identify the direct target sites of E2A-PBX1 in t(1,19)-positive pre-B ALL cells and show that, compared with normal E2A, E2A-PBX1 preferentially binds to a subset of gene loci cobound by RUNX1 and gene-activating machineries (p300, MED1, and H3K27 acetylation). Using biochemical analyses, we further document a direct interaction of E2A-PBX1, through a region spanning the PBX1 homeodomain, with RUNX1. Our results also show that E2A-PBX1 binding to gene enhancers is dependent on the RUNX1 interaction but not the DNA-binding activity harbored within the PBX1 homeodomain of E2A-PBX1. Transcriptome analyses and cell transformation assays further establish a significant RUNX1 requirement for E2A-PBX1-mediated target gene activation and leukemogenesis. Notably, the RUNX1 locus itself is also directly activated by E2A-PBX1, indicating a multilayered interplay between E2A-PBX1 and RUNX1. Collectively, our study provides the first unbiased profiling of the E2A-PBX1 cistrome in pre-B ALL cells and reveals a previously unappreciated pathway in which E2A-PBX1 acts in concert with RUNX1 to enforce transcriptome alterations for the development of pre-B ALL.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Motivos de Aminoácidos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Código das Histonas , Proteínas de Homeodomínio/química , Humanos , Complexo Mediador/metabolismo , Proteínas de Fusão Oncogênica/química , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Domínios Proteicos , Mapeamento de Interação de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Relação Estrutura-Atividade , Transcriptoma , Fatores de Transcrição de p300-CBP/metabolismo
17.
J Am Chem Soc ; 143(37): 15073-15083, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34520194

RESUMO

Proteolysis targeting chimeras (PROTACs) represent a new class of promising therapeutic modalities. PROTACs hijack E3 ligases and the ubiquitin-proteasome system (UPS), leading to selective degradation of the target proteins. However, only a very limited number of E3 ligases have been leveraged to generate effective PROTACs. Herein, we report that the KEAP1 E3 ligase can be harnessed for targeted protein degradation utilizing a highly selective, noncovalent small-molecule KEAP1 binder. We generated a proof-of-concept PROTAC, MS83, by linking the KEAP1 ligand to a BRD4/3/2 binder. MS83 effectively reduces protein levels of BRD4 and BRD3, but not BRD2, in cells in a concentration-, time-, KEAP1- and UPS-dependent manner. Interestingly, MS83 degrades BRD4/3 more durably than the CRBN-recruiting PROTAC dBET1 in MDA-MB-468 cells and selectively degrades BRD4 short isoform over long isoform in MDA-MB-231 cells. It also displays improved antiproliferative activity than dBET1. Overall, our study expands the limited toolbox for targeted protein degradation.


Assuntos
Antineoplásicos , Proteína 1 Associada a ECH Semelhante a Kelch , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Modelos Moleculares , Proteólise , Neoplasias de Mama Triplo Negativas
18.
Blood ; 134(14): 1176-1189, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31383640

RESUMO

Dysregulation of polycomb repressive complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing trimethylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19; also known as polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM). Overexpression and/or genomic amplification of PHF19 is found associated with malignant progression of MM and plasma cell leukemia, correlating to worse treatment outcomes. Using various MM models, we demonstrated a critical requirement of PHF19 for tumor growth in vitro and in vivo. Mechanistically, PHF19-mediated oncogenic effect relies on its PRC2-interacting and chromatin-binding functions. Chromatin immunoprecipitation followed by sequencing profiling showed a critical role for PHF19 in maintaining the H3K27me3 landscape. PHF19 depletion led to loss of broad H3K27me3 domains, possibly due to impaired H3K27me3 spreading from cytosine guanine dinucleotide islands, which is reminiscent to the reported effect of an "onco"-histone mutation, H3K27 to methionine (H3K27M). RNA-sequencing-based transcriptome profiling in MM lines also demonstrated a requirement of PHF19 for optimal silencing of PRC2 targets, which include cell cycle inhibitors and interferon-JAK-STAT signaling genes critically involved in tumor suppression. Correlation studies using patient sample data sets further support a clinical relevance of the PHF19-regulated pathways. Lastly, we show that MM cells are generally sensitive to PRC2 inhibitors. Collectively, this study demonstrates that PHF19 promotes MM tumorigenesis through enhancing H3K27me3 deposition and PRC2's gene-regulatory functions, lending support for PRC2 blockade as a means for MM therapeutics.


Assuntos
Carcinogênese/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Mieloma Múltiplo/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Humanos , Metilação , Camundongos , Mieloma Múltiplo/patologia
19.
Mol Cell ; 49(3): 571-82, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23273982

RESUMO

Polycomb repressive complex 2 (PRC2) regulates pluripotency, differentiation, and tumorigenesis through catalysis of histone H3 lysine 27 trimethylation (H3K27me3) on chromatin. However, the mechanisms that underlie PRC2 recruitment and spreading on chromatin remain unclear. Here we report that histone H3 lysine 36 trimethylation (H3K36me3) binding activity is harbored in the Tudor motifs of PRC2-associated polycomb-like (PCL) proteins PHF1/PCL1 and PHF19/PCL3. Ectopically expressed PHF1 induced Tudor-dependent stabilization of PRC2 complexes on bulk chromatin and mediated spreading of PRC2 and H3K27me3 into H3K36me3-containing chromatin regions. In murine pluripotent stem cells, we identified coexistence of H3K36me3, H3K27me3, and PHF19/PCL3 at a subset of poised developmental genes and demonstrated that PHF19/PCL3 Tudor function is required for optimal H3K27me3 and repression of these loci. Collectively, our data suggest that PCL recognition of H3K36me3 promotes intrusion of PRC2 complexes into active chromatin regions to promote gene silencing and modulate the chromatin landscape during development.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Motivos de Aminoácidos , Animais , Calorimetria , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Teste de Complementação Genética , Loci Gênicos , Humanos , Metilação , Camundongos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas do Grupo Polycomb , Ligação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
Cell Mol Life Sci ; 76(15): 2899-2916, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31147750

RESUMO

Methylation of histone H3 lysine 36 (H3K36) plays crucial roles in the partitioning of chromatin to distinctive domains and the regulation of a wide range of biological processes. Trimethylation of H3K36 (H3K36me3) demarcates body regions of the actively transcribed genes, providing signals for modulating transcription fidelity, mRNA splicing and DNA damage repair; and di-methylation of H3K36 (H3K36me2) spreads out within large intragenic regions, regulating distribution of histone H3 lysine 27 trimethylation (H3K27me3) and possibly DNA methylation. These H3K36 methylation-mediated events are biologically crucial and controlled by different classes of proteins responsible for either 'writing', 'reading' or 'erasing' of H3K36 methylation marks. Deregulation of H3K36 methylation and related regulatory factors leads to pathogenesis of disease such as developmental syndrome and cancer. Additionally, recurrent mutations of H3K36 and surrounding histone residues are detected in human tumors, further highlighting the importance of H3K36 in biology and medicine. This review will elaborate on current advances in understanding H3K36 methylation and related molecular players during various chromatin-templated cellular processes, their crosstalks with other chromatin factors, as well as their deregulations in the diseased contexts.


Assuntos
Histonas/metabolismo , Neoplasias/patologia , Transtornos do Neurodesenvolvimento/patologia , Metilases de Modificação do DNA/metabolismo , Reparo do DNA , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Neoplasias/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA