Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(20): 5419-5422, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831882

RESUMO

We propose what we believe to be a new kind of diffractive phase element, i.e., vortex phase plate (VPP) with phase singularities along the azimuth direction. Phase function of the proposed VPP is given analytically. Axial intensity oscillations of propagating Bessel beams are ideally suppressed by using the proposed VPP. Compared with the traditional amplitude mask, the proposed VPP takes such advantages as a simpler fabrication procedure and a lower cost.

2.
Opt Express ; 28(23): 35179-35191, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182969

RESUMO

Graphene-based terahertz (THz) metasurfaces have the advantages of ultra-small thickness, electrical tunability, and fast tuning speed. However, many such structures suffer low efficiency, especially for transmissive devices. Here we propose a hybrid structure for focusing THz waves with tunability and enhanced focusing efficiency, which is composed of a graphene-loaded metallic metasurface sandwiched by two mutually orthogonal gratings. Experimental results show that due to the multi-reflection between the metasurface layer and the grating layer, the focusing efficiency is enhanced by 1.8 times, and the focal length of the metalens is increased by 0.61 mm when the applied gate voltage on the graphene is increased from 0 V to 1.4 V. We hope the proposed structure may open a new avenue for reconfigurable THz metasurfaces with high efficiencies.

3.
Opt Express ; 28(3): 2789-2798, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121959

RESUMO

Metasurfaces have proven their great application potentials in terahertz (THz) wave modulations. However, realizing an active metasurface retaining lensing functionality in the THz frequency regime is still highly desired. Here a metalens, featuring electrically tunable focal length, based on propagation phase delay, is proposed and demonstrated experimentally. To have full control over the designed lens functionality, a gold thin film etched with a C-shaped aperture antenna array covered by monolayer graphene is used. By applying a bias voltage to the graphene, the phase control of the antenna array is changed, and thus the focus of the linearly polarized THz beam can be flexibly tuned from 7.13mm to 8.25mm. The proposed approach has a promising perspective for a variety of applications in communication, reconfigurable flat optics and real-time imaging in THz regime.

4.
Nanoscale Adv ; 5(3): 756-766, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756529

RESUMO

The combination of graphene and perovskite has received extensive research attention because its photoelectric properties are excellent for the dynamic manipulation of light-matter interactions. Combining graphene and perovskite with a metasurface is expected to effectively improve the metasurface device's performance. Here, we report a terahertz graphene-perovskite metasurface with a tunable resonance. Under 780 nm laser excitation, the device's THz transmission is significantly reduced, and the Fano resonance mode can be manipulated in multiple dimensions. We verify the experimental results using a finite-difference time-domain (FDTD) simulation. Graphene and perovskite interact strongly with the metasurface, resulting in a short-circuit effect, which significantly weakens the resonance intensity of the Fano mode. The photoinduced conductivity enhancement intensifies the short-circuit effect, reducing the THz transmission and resonance intensity of the Fano mode and causing the resonance frequency to redshift. Finally, we provide a reference value for applications of hybrid metasurface-based optical devices in a real environment by investigating the effect of moisture on device performance.

5.
Nanoscale Adv ; 4(16): 3342-3352, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131710

RESUMO

A graphene-based terahertz negative-conductivity metasurface based on two types of unit cell structures is investigated under the control of an external bias voltage. Electrical characterization is conducted and verification is performed using a finite-difference time-domain (FDTD) and an optical-pump terahertz (THz)-probe system in terms of simulation and transient response analysis. Owing to the metal-like properties of graphene, a strong interaction between the metasurface and monolayer graphene yields a short-circuit effect, which considerably weakens the intensity of the resonance mode under passive conditions. Under active conditions, graphene, as an active load, actively induces a negative-conductivity effect, which enhances the THz transmission and recovers the resonance intensity gradually because of the weakening of the short-circuit effect. The resulting resonance frequency shows a blue shift. This study provides a reference value for combining graphene exhibiting the terahertz bias-driven negative-conductivity effect with metasurfaces and its corresponding applications in the future.

6.
Nanoscale ; 14(38): 14240-14247, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36128908

RESUMO

Super cells or multi-layer metasurfaces are used to realize various multi-functional and exotic functional devices. In such methods, the design space expands exponentially as more variable parameters are introduced; however, this will necessitate huge computational effort without special treatment. The function of a metasurface can be described mathematically by using a Jones matrix. When the gap between adjacent atoms is sufficiently large, the overall Jones matrix of a 3D lattice which is composed of multiple meta-atoms can be obtained by adding or multiplying each meta-atom's Jones matrix for a parallel or cascaded arrangement, respectively. Reversely, an arbitrary Jones matrix can be decomposed to achieve a combination of diagonal and rotation matrices. This means that the devices with various functions can be constructed by combining, cascading, and rotating a kind of atom, and thus the computation requirements will be reduced significantly. In this work, the feasibility of this approach is demonstrated with two cases, circular polarization selective transmission and resemble optical activity. Both the simulation and experiment are consistent with the hypothesis. This method can manipulate all degrees of freedom in a Jones matrix and reduce design complexity and may find applications to extend the scope of meta-optics.

7.
Nanoscale ; 13(11): 5809-5816, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33710236

RESUMO

Integrating independent wavefront controls into one device can meet the increasing demand for high-capacity flat electromagnetic devices. Simultaneously and independently controlling the amplitude and phase is pivotal for completely manipulating the propagation of electromagnetic waves. Here, we propose several all-silicon metasurfaces to achieve multifunctional designs and simultaneous modulation of amplitude and phase profiles in the terahertz (THz) band. These metasurfaces integrate two degrees of freedom of the propagation phase and Pancharatnam-Berry (PB) phase. To illustrate the feasibility of this design, three schematic functions are shown below: a three-channel vortex beam generator, a controllable intensity ratio of co- and cross-polarizations corresponding to the incident circular polarization (CP), and a bifocal metasurface that is capable of generating two off-axis vortices with controllable power allocation. A sample is fabricated to specifically verify the amplitude and phase modulation of this design. The experimental results agree well with the simulations and validate the good performances of our proposals. This approach for directly generating an editable amplitude and phase may provide a new choice to design ultra-thin photonic devices.

8.
Nanoscale ; 13(34): 14490-14496, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473815

RESUMO

Conventionally, the realization of polarization transformation and wavefront manipulation in metasurfaces relies on the Pancharatnam-Berry (PB) phase together with the dynamic phase. However, the reported polarization transformation and wavefront manipulation were limited to spin-dependent wavefront manipulation for circular polarization (CP). To obtain more abundant functions, we propose a novel technology that relies on the dynamic phase with a spatial interleaving unit arrangement. With the functions of a quarter wave plate, the metasurfaces we designed can achieve multiple wavefront manipulations which are not only for the spin polarization transformation but also for the linear polarization transformation. Specifically, we design a bifocal metasurface, which can focus on one circularly polarized component as a point and spin-opposite component as a vortex under the linearly polarized (LP) incidence. With the further adjustment of the unit arrangement, the left-hand circularly polarized (LCP) and right-hand circularly polarized (RCP) components under the LP incidence can be refocused on the same point and then composited, resulting in a new LP exit wave. Furthermore, we prove theoretically that the desired x-LP component and y-LP component under the arbitrary CP incidence can also be manipulated independently. We believe that the versatility of this method will provide a novel platform for the development of terahertz integrated photonics.

9.
Nanoscale ; 13(24): 10898-10905, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34126628

RESUMO

Chiral metasurfaces which can achieve different optical responses for left-handed and right-handed circularly polarized (CP) light have been proposed. Most of the research studies on chiral metasurfaces focus on improving circular dichroism (CD) and realizing dynamic manipulation of the chiro-optical response. However, there have only been a few reports on the multi-band chiro-optical response. Here, we propose an all-silicon chiral meta-atom which can realize spin-selective transmission in a dual band. In addition, a terahertz metasurface with spin-selective transmission through phase arrangement is designed by using chiral meta-atoms satisfying a gradient geometric phase. Under left-hand circularly polarized (LCP) incidence, the metasurface generates a focused right-hand circularly polarized (RCP) beam which is focused at a distance of 4.8 mm from the exit surface of the metasurface. Our work broadens the concept of metasurface design and may attract more researchers' attention on the applications of chiral metasurfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA