Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(7): 1465-1477.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001505

RESUMO

Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.


Assuntos
Glucagon , Receptores de Glucagon , Membrana Celular/metabolismo , Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo
2.
Cell ; 162(6): 1379-90, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359989

RESUMO

The HIV-1 envelope (Env) spike contains limited epitopes for broadly neutralizing antibodies (bNAbs); thus, most neutralizing antibodies are strain specific. The 8ANC195 epitope, defined by crystal and electron microscopy (EM) structures of bNAb 8ANC195 complexed with monomeric gp120 and trimeric Env, respectively, spans the gp120 and gp41 Env subunits. To investigate 8ANC195's gp41 epitope at higher resolution, we solved a 3.58 Å crystal structure of 8ANC195 complexed with fully glycosylated Env trimer, revealing 8ANC195 insertion into a glycan shield gap to contact gp120 and gp41 glycans and protein residues. To determine whether 8ANC195 recognizes the CD4-bound open Env conformation that leads to co-receptor binding and fusion, one of several known conformations of virion-associated Env, we solved EM structures of an Env/CD4/CD4-induced antibody/8ANC195 complex. 8ANC195 binding partially closed the CD4-bound trimer, confirming structural plasticity of Env by revealing a previously unseen conformation. 8ANC195's ability to bind different Env conformations suggests advantages for potential therapeutic applications.


Assuntos
Anticorpos Neutralizantes/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/química , Anticorpos Neutralizantes/ultraestrutura , Epitopos , Proteína gp120 do Envelope de HIV/ultraestrutura , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Conformação Proteica , Difração de Raios X
3.
Nature ; 629(8013): 951-956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632403

RESUMO

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.


Assuntos
Ligantes , Domínios Proteicos , Receptor de Glutamato Metabotrópico 5 , Humanos , Regulação Alostérica/efeitos dos fármacos , Fluorescência , Modelos Moleculares , Ligação Proteica , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Imagem Individual de Molécula , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo
4.
Nature ; 613(7945): 767-774, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450356

RESUMO

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Assuntos
Desenho de Fármacos , Fentanila , Morfinanos , Receptores Opioides mu , Animais , Camundongos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Microscopia Crioeletrônica , Fentanila/análogos & derivados , Fentanila/química , Fentanila/metabolismo , Ligantes , Morfinanos/química , Morfinanos/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Sítios de Ligação , Nociceptividade
5.
Nat Chem Biol ; 20(1): 30-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37400538

RESUMO

Ectodomain phosphatase/phosphodiesterase-1 (ENPP1) is overexpressed on cancer cells and functions as an innate immune checkpoint by hydrolyzing extracellular cyclic guanosine monophosphate adenosine monophosphate (cGAMP). Biologic inhibitors have not yet been reported and could have substantial therapeutic advantages over current small molecules because they can be recombinantly engineered into multifunctional formats and immunotherapies. Here we used phage and yeast display coupled with in cellulo evolution to generate variable heavy (VH) single-domain antibodies against ENPP1 and discovered a VH domain that allosterically inhibited the hydrolysis of cGAMP and adenosine triphosphate (ATP). We solved a 3.2 Å-resolution cryo-electron microscopy structure for the VH inhibitor complexed with ENPP1 that confirmed its new allosteric binding pose. Finally, we engineered the VH domain into multispecific formats and immunotherapies, including a bispecific fusion with an anti-PD-L1 checkpoint inhibitor that showed potent cellular activity.


Assuntos
Diester Fosfórico Hidrolases , Anticorpos de Domínio Único , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases , Microscopia Crioeletrônica
6.
Nat Chem Biol ; 19(4): 423-430, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36411392

RESUMO

Drugs targeting the µ-opioid receptor (µOR) are the most effective analgesics available but are also associated with fatal respiratory depression through a pathway that remains unclear. Here we investigated the mechanistic basis of action of lofentanil (LFT) and mitragynine pseudoindoxyl (MP), two µOR agonists with different safety profiles. LFT, one of the most lethal opioids, and MP, a kratom plant derivative with reduced respiratory depression in animal studies, exhibited markedly different efficacy profiles for G protein subtype activation and ß-arrestin recruitment. Cryo-EM structures of µOR-Gi1 complex with MP (2.5 Å) and LFT (3.2 Å) revealed that the two ligands engage distinct subpockets, and molecular dynamics simulations showed additional differences in the binding site that promote distinct active-state conformations on the intracellular side of the receptor where G proteins and ß-arrestins bind. These observations highlight how drugs engaging different parts of the µOR orthosteric pocket can lead to distinct signaling outcomes.


Assuntos
Analgésicos Opioides , Transdução de Sinais , Animais , beta-Arrestinas/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Sítios de Ligação
7.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205640

RESUMO

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismo
9.
Nature ; 570(7762): 468-473, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142836

RESUMO

Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Células Clonais/imunologia , HIV-1/química , HIV-1/imunologia , Macaca mulatta/imunologia , Vacinação , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Afinidade de Anticorpos , Especificidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Linfócitos B/citologia , Proliferação de Células , Células Clonais/citologia , Clonagem Molecular , Apresentação Cruzada/imunologia , Microscopia Crioeletrônica , Feminino , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/ultraestrutura , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Epitopos Imunodominantes/ultraestrutura , Ativação Linfocitária , Masculino , Camundongos , Modelos Moleculares , Polissacarídeos/imunologia , Coelhos , Hipermutação Somática de Imunoglobulina
10.
J Clean Prod ; 395: 136394, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789403

RESUMO

The construction industry has been severely affected by the COVID-19 pandemic and the associated restrictions on person-to-person contacts issued by the government. A construction site usually has a high number of workers working at the same time; therefore, the question of how to ensure their safety during the pandemic-that is, how to protect them from getting infected-has become an urgent problem. In this study, we propose a bi-objective integer programming model to establish the optimal schedule plan under COVID-19 regulations. We develop a solution method and conduct numerical experiments to solve and validate our model. The optimal schedule plan can avoid contacts between workers of different groups while minimizing the total costs of complying with government policy. Our proposed model can be applied in practice to help project managers establish a reasonable and cost-effective schedule plan. This study contributes to reducing the operating costs of contractors and protecting the health of construction workers.

11.
Chembiochem ; 23(7): e202200027, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35129249

RESUMO

Integral membrane proteins pose considerable challenges to high resolution structural analysis. Maintaining membrane proteins in their native state during protein isolation is essential for structural study of these bio-macromolecules. Detergents are the most commonly used amphiphilic compounds for stabilizing membrane proteins in solution outside a lipid bilayer. We previously introduced a glyco-diosgenin (GDN) detergent that was shown to be highly effective at stabilizing a wide range of membrane proteins. This steroidal detergent has additionally gained attention due to its compatibility with membrane protein structure study via cryo-EM. However, synthetic inconvenience limits widespread use of GDN in membrane protein study. To improve its synthetic accessibility and to further enhance detergent efficacy for protein stabilization, we designed a new class of glyco-steroid-based detergents using three steroid units: cholestanol, cholesterol and diosgenin. These new detergents were efficiently prepared and showed marked efficacy for protein stabilization in evaluation with a few model membrane proteins including two G protein-coupled receptors. Some new agents were not only superior to a gold standard detergent, DDM (n-dodecyl-ß-d-maltoside), but were also more effective than the original GDN at preserving protein integrity long term. These agents represent valuable alternatives to GDN, and are likely to facilitate structural determination of challenging membrane proteins.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Estabilidade Proteica , Esteroides
12.
Chemistry ; 28(21): e202200116, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35238091

RESUMO

Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM-Hs) and 1,2-ethylenediamine (TZM-Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM-Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM-Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM-Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Estabilidade Proteica , Triazinas
13.
Eur Biophys J ; 51(2): 119-133, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35171346

RESUMO

Mechanobiology is an emerging field at the interface of biology and mechanics, investigating the roles of mechanical forces within biomolecules, organelles, cells, and tissues. As a highlight, the recent advances of micropipette-based aspiration assays and dynamic force spectroscopies such as biomembrane force probe (BFP) provide unprecedented mechanobiological insights with excellent live-cell compatibility. In their classic applications, these assays measure force-dependent ligand-receptor-binding kinetics, protein conformational changes, and cellular mechanical properties such as cortical tension and stiffness. In recent years, when combined with advanced microscopies in high spatial and temporal resolutions, these biomechanical nanotools enable characterization of receptor-mediated cell mechanosensing and subsequent organelle behaviors at single-cellular and molecular level. In this review, we summarize the latest developments of these assays for live-cell mechanobiology studies. We also provide perspectives on their future upgrades with multimodal integration and high-throughput capability.


Assuntos
Fenômenos Mecânicos , Proteínas , Fenômenos Biomecânicos , Biofísica , Cinética , Ligantes , Proteínas/química
14.
Eur Biophys J ; 51(2): 135-146, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35286429

RESUMO

Mechanical stimuli such as tension, compression, and shear stress play critical roles in the physiological functions of red blood cells (RBCs) and their homeostasis, ATP release, and rheological properties. Intracellular calcium (Ca2+) mobilization reflects RBC mechanosensing as they transverse the complex vasculature. Emerging studies have demonstrated the presence of mechanosensitive Ca2+ permeable ion channels and their function has been implicated in the regulation of RBC volume and deformability. However, how these mechanoreceptors trigger Ca2+ influx and subsequent cellular responses are still unclear. Here, we introduce a fluorescence-coupled micropipette aspiration assay to examine RBC mechanosensing at the single-cell level. To achieve a wide range of cell aspirations, we implemented and compared two negative pressure adjusting apparatuses: a homemade water manometer (- 2.94 to 0 mmH2O) and a pneumatic high-speed pressure clamp (- 25 to 0 mmHg). To visualize Ca2+ influx, RBCs were pre-loaded with an intensiometric probe Cal-520 AM, then imaged under a confocal microscope with concurrent bright-field and fluorescent imaging at acquisition rates of 10 frames per second. Remarkably, we observed the related changes in intracellular Ca2+ levels immediately after aspirating individual RBCs in a pressure-dependent manner. The RBC aspirated by the water manometer only displayed 1.1-fold increase in fluorescence intensity, whereas the RBC aspirated by the pneumatic clamp showed up to threefold increase. These results demonstrated the water manometer as a gentle tool for cell manipulation with minimal pre-activation, while the high-speed pneumatic clamp as a much stronger pressure actuator to examine cell mechanosensing directly. Together, this multimodal platform enables us to precisely control aspiration and membrane tension, and subsequently correlate this with intracellular calcium concentration dynamics in a robust and reproducible manner.


Assuntos
Cálcio , Deformação Eritrocítica , Cálcio/metabolismo , Eritrócitos , Canais Iônicos/metabolismo , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 116(42): 21094-21103, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570615

RESUMO

Distantly related species entering similar biological niches often adapt by evolving similar morphological and physiological characters. How much genomic molecular convergence (particularly of highly constrained coding sequence) contributes to convergent phenotypic evolution, such as echolocation in bats and whales, is a long-standing fundamental question. Like others, we find that convergent amino acid substitutions are not more abundant in echolocating mammals compared to their outgroups. However, we also ask a more informative question about the genomic distribution of convergent substitutions by devising a test to determine which, if any, of more than 4,000 tissue-affecting gene sets is most statistically enriched with convergent substitutions. We find that the gene set most overrepresented (q-value = 2.2e-3) with convergent substitutions in echolocators, affecting 18 genes, regulates development of the cochlear ganglion, a structure with empirically supported relevance to echolocation. Conversely, when comparing to nonecholocating outgroups, no significant gene set enrichment exists. For aquatic and high-altitude mammals, our analysis highlights 15 and 16 genes from the gene sets most affected by molecular convergence which regulate skin and lung physiology, respectively. Importantly, our test requires that the most convergence-enriched set cannot also be enriched for divergent substitutions, such as in the pattern produced by inactivated vision genes in subterranean mammals. Showing a clear role for adaptive protein-coding molecular convergence, we discover nearly 2,600 convergent positions, highlight 77 of them in 3 organs, and provide code to investigate other clades across the tree of life.


Assuntos
Quirópteros/genética , Quirópteros/fisiologia , Ecolocação/fisiologia , Proteínas/genética , Baleias/genética , Baleias/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Substituição de Aminoácidos/genética , Animais , Evolução Molecular , Genoma/genética , Genômica/métodos , Audição/genética , Audição/fisiologia , Filogenia , Seleção Genética/genética
16.
J Environ Manage ; 323: 116172, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261974

RESUMO

Good water quality is critical to public health and aquatic ecological security of global reservoirs. In stratified reservoirs, increasing near-term management demands foster extremely high monitoring and forecasting needs. In this study, a management assistant for stratified reservoirs (MASR) was developed, including a wave-driven monitoring platform and interpretation platform for multiple reservoir water quality variables. The wave-driven platform can adapt to the characteristics of water level changes and transmit the monitoring data through a mobile network to the reservoir manager, which are processed by the interpretation platform in real time for near-term management. After several months of application, MASR monitored 1237 groups of valid profile water quality data with an acceptable error, which showed a strong capacity for capturing the water quality dynamics in a stratified reservoir. The effective identification of thermal stratification structures and anoxic zones can help managers to design withdrawal schemes for reservoirs. Moreover, the prediction of algae state based on the back propagation (BP) neural network provided the basis for making operation plans to proactively control algae blooms. Our study provides an economical and convenient solution for stratified reservoirs to address near-term management issues.


Assuntos
Eutrofização , Qualidade da Água , Monitoramento Ambiental
17.
Angew Chem Int Ed Engl ; 61(26): e202200269, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35385593

RESUMO

The µ-opioid receptor (µOR) is the major target for opioid analgesics. Activation of µOR initiates signaling through G protein pathways as well as through ß-arrestin recruitment. µOR agonists that are biased towards G protein signaling pathways demonstrate diminished side effects. PZM21, discovered by computational docking, is a G protein biased µOR agonist. Here we report the cryoEM structure of PZM21 bound µOR in complex with Gi protein. Structure-based evolution led to multiple PZM21 analogs with more pronounced Gi protein bias and increased lipophilicity to improve CNS penetration. Among them, FH210 shows extremely low potency and efficacy for arrestin recruitment. We further determined the cryoEM structure of FH210 bound to µOR in complex with Gi protein and confirmed its expected binding pose. The structural and pharmacological studies reveal a potential mechanism to reduce ß-arrestin recruitment by the µOR, and hold promise for developing next-generation analgesics with fewer adverse effects.


Assuntos
Proteínas de Ligação ao GTP , Receptores Opioides mu , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia
18.
J Am Chem Soc ; 142(51): 21382-21392, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33315387

RESUMO

Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-ß-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.


Assuntos
Ciclopentanos/química , Maltose/química , Maltose/farmacologia , Proteínas de Membrana/química , Desenho de Fármacos , Glucosídeos/química , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Estereoisomerismo
19.
Proc Natl Acad Sci U S A ; 113(46): E7151-E7158, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799557

RESUMO

The HIV-1 envelope (Env) glycoprotein, a trimer of gp120-gp41 heterodimers, relies on conformational flexibility to function in fusing the viral and host membranes. Fusion is achieved after gp120 binds to CD4, the HIV-1 receptor, and a coreceptor, capturing an open conformational state in which the fusion machinery on gp41 gains access to the target cell membrane. In the well-characterized closed Env conformation, the gp120 V1V2 loops interact at the apex of the Env trimer. Less is known about the structure of the open CD4-bound state, in which the V1V2 loops must rearrange and separate to allow access to the coreceptor binding site. We identified two anti-HIV-1 antibodies, the coreceptor mimicking antibody 17b and the gp120-gp41 interface-spanning antibody 8ANC195, that can be added as Fabs to a soluble native-like Env trimer to stabilize it in a CD4-bound conformation. Here, we present an 8.9-Šcryo-electron microscopy structure of a BG505 Env-sCD4-17b-8ANC195 complex, which reveals large structural rearrangements in gp120, but small changes in gp41, compared with closed Env structures. The gp120 protomers are rotated and separated in the CD4-bound structure, and the three V1V2 loops are displaced by ∼40 Šfrom their positions at the trimer apex in closed Env to the sides of the trimer in positions adjacent to, and interacting with, the three bound CD4s. These results are relevant to understanding CD4-induced conformational changes leading to coreceptor binding and fusion, and HIV-1 Env conformational dynamics, and describe a target structure relevant to drug design and vaccine efforts.


Assuntos
Antígenos CD4/química , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Antígenos CD4/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
20.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284529

RESUMO

Micropipette aspiration assays have long been a cornerstone for the investigation of live-cell mechanics, offering insights into cellular responses to mechanical stress. This paper details an innovative adaptation of the fluorescence-coupled micropipette aspiration (fMPA) assay. The fMPA assay introduces the capability to administer precise mechanical forces while concurrently monitoring the live-cell mechanotransduction processes mediated by ion channels. The sophisticated setup incorporates a precision-engineered borosilicate glass micropipette connected to a finely regulated water reservoir and pneumatic aspiration system, facilitating controlled pressure application with increments as refined as ± 1 mmHg. A significant enhancement is the integration of epi-fluorescence imaging, allowing for the simultaneous observation and quantification of cell morphological changes and intracellular calcium fluxes during aspiration. The fMPA assay, through its synergistic combination of epi-fluorescence imaging with micropipette aspiration, sets a new standard for the study of cell mechanosensing within mechanically challenging environments. This multifaceted approach is adaptable to various experimental setups, providing critical insights into the single-cell mechanosensing mechanisms.


Assuntos
Eritrócitos , Mecanotransdução Celular , Mecanotransdução Celular/fisiologia , Fluorescência , Estresse Mecânico , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA