RESUMO
Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mapeamento Geográfico , Microbiologia do Solo , Solo , Animais , Conservação dos Recursos Naturais/métodos , Solo/parasitologia , Invertebrados , ArchaeaRESUMO
Grasslands are integral to maintaining biodiversity and key ecosystem services and are under threat from climate change. Plant and soil microbial diversity, and their interactions, support the provision of multiple ecosystem functions (multifunctionality). However, it remains virtually unknown whether plant and soil microbial diversity explain a unique portion of total variation or shared contributions to supporting multifunctionality across global grasslands. Here, we combine results from a global survey of 101 grasslands with a novel microcosm study, controlling for both plant and soil microbial diversity to identify their individual and interactive contribution to support multifunctionality under aridity and experimental drought. We found that plant and soil microbial diversity independently predict a unique portion of total variation in above- and belowground functioning, suggesting that both types of biodiversity complement each other. Interactions between plant and soil microbial diversity positively impacted multifunctionality including primary production and nutrient storage. Our findings were also climate context dependent, since soil fungal diversity was positively associated with multifunctionality in less arid regions, while plant diversity was strongly and positively linked to multifunctionality in more arid regions. Our results highlight the need to conserve both above- and belowground diversity to sustain grassland multifunctionality in a drier world and indicate climate change may shift the relative contribution of plant and soil biodiversity to multifunctionality across global grasslands.
Assuntos
Biodiversidade , Mudança Climática , Pradaria , Microbiologia do Solo , Ecossistema , Solo/química , Secas , Plantas , Fungos/fisiologiaRESUMO
The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.
Assuntos
Produtos Agrícolas , Microbiota , Rizosfera , Microbiologia do Solo , Produtos Agrícolas/microbiologia , Solo/química , Fungos/fisiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Invertebrados/microbiologia , Invertebrados/fisiologiaRESUMO
Climate and edaphic properties drive the biogeographic distribution of dominant soil microbial phylotypes in terrestrial ecosystems. However, the impact of plant species and their root nutritional traits on microbial distribution in coastal wetlands remains unclear. Here, we investigated the nutritional traits of 100 halophyte root samples and the bacterial communities in the corresponding soil samples from coastal wetlands across eastern China. This study spans 22° of latitude, covering over 2500 km from north to south. We found that 1% of soil bacterial phylotypes accounted for nearly 30% of the soil bacterial community abundance, suggesting that a few bacterial phylotypes dominated the coastal wetlands. These dominated phylotypes could be grouped into three ecological clusters as per their preference over climatic (temperature and precipitation), edaphic (soil carbon and nitrogen), and plant factors (halophyte vegetation, root carbon, and nitrogen). We further provide novel evidence that plant root nutritional traits, especially root C and N, can strongly influence the distribution of these ecological clusters. Taken together, our study provides solid evidence of revealing the dominance of specific bacterial phylotypes and the complex interactions with their environment, highlighting the importance of plant root nutritional traits on biogeographic distribution of soil microbiome in coastal wetland ecosystems.
Assuntos
Bactérias , Raízes de Plantas , Microbiologia do Solo , Áreas Alagadas , China , Raízes de Plantas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Carbono/metabolismo , Carbono/análise , Filogenia , Especificidade da Espécie , Plantas/microbiologia , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/fisiologiaRESUMO
Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic strokeâtwo of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.
RESUMO
Malignant tumors represent an important cause of mortality within the global population. Tumor angiogenesis, recognized as one of the key hallmarks of malignant tumors, is crucial for supplying essential nutrients and oxygen for tumor growth. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are key drivers of tumor angiogenesis. Targeted therapeutic interventions not only effectively inhibit tumor growth by specifically blocking tumor angiogenesis but have also made breakthroughs in the treatment of malignant tumors. Fruquintinib, an anti-angiogenic small molecule drug developed independently in China, functions as a potent tyrosine kinase inhibitor with high selectivity. It effectively curtails tumor growth by binding to and inhibiting VEGFR-1, VEGFR-2, and VEGFR-3. Additionally, fruquintinib offers several advantages including minimal off-target toxicity, robust resistance profiles, and commendable efficacy. This agent can be used alone or in combination with other treatments. It has shown high effectiveness and survival benefits across various malignant tumors such as colorectal cancer, gastric cancer, non-small cell lung cancer, breast cancer, and other malignant tumors. Therefore, this article conducts a systematic review encompassing the mechanism of action, pharmacokinetics, clinical efficacy, and safety profile of fruquintinib. Through this review, we aimed to offer a reference for the clinical application and subsequent development of fruquintinib.
RESUMO
Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.
Assuntos
Embriófitas , Microbiota , Microbiologia do Solo , Biodiversidade , Solo/químicaRESUMO
Objective: To assess knowledge and practices related to snakebite prevention among Chinese residents. Methods: By using a multistage random sampling approach augmented by snowball sampling, we surveyed residents from 10 provinces, one municipality and one autonomous region south of the Yangtze River Basin between May 2022 and February 2023. We supplemented the data with a national online survey. We used a χ2-test to identify differences in knowledge and behaviour across various demographic characteristics. We conducted multifactor logistic regression analyses to evaluate factors potentially influencing snakebite knowledge and practices. Findings: We obtained 55 775 valid survey responses, 16 200 respondents from the face-to-face survey and 39 575 respondents from the online survey. Only 25.7% (14 325) respondents demonstrated adequate knowledge about snakebites whereas 25.6% (14 295) respondents knew basic first-aid practices or preventive behaviours. Age, marital status, educational attainment, occupation, type of residence and frequency of exposure to nature are significant independent variables affecting snakebite knowledge (P-values: < 0.05). On the other hand, gender, age, marital status, educational attainment, occupation and type of residence were significant independent variables affecting the behaviour of snakebite prevention and first aid (P-values: < 0.05). Conclusion: There is a notable shortfall in knowledge, first aid and preventive behaviours among Chinese residents regarding snakebites. Misguided first aid practices can severely compromise the effectiveness of evidence-based therapeutic interventions. Consequently, improving health education concerning snakes and snakebites in this population is needed.
Assuntos
Mordeduras de Serpentes , Animais , Humanos , Mordeduras de Serpentes/epidemiologia , Mordeduras de Serpentes/prevenção & controle , Estudos Transversais , Serpentes , China/epidemiologia , Inquéritos e Questionários , Conhecimentos, Atitudes e Prática em SaúdeRESUMO
Photocatalytic oxidation technology is one of the most efficient and green methods to convert highly toxic As(III) into lowly toxic As(V) for arsenic-polluted wastewater. However, the obtained As(V) may be reduced to As(III) again in the environment, causing secondary pollution. In order to resolve these issues, a bifunctional composite consisting of needle-like α-FeOOH-modified Sn/N-codoped TiO2 granules (SNT-FeOOH) has been synthesized. After modifying, the band gap of SNT-FeOOH narrowed from 2.94 eV (SNT) to 2.29 eV. When the composites were applied to As(III) removal, 10 mg of SNT-FeOOH could totally photocatalytically oxidize 40 mL of As(III) solution with a concentration of 10,000 µg/L within 15 min and synchronously achieve complete adsorption of the produced As(V), which is much more efficient than pure Sn/N-codoped TiO2 [21 min for As(III) photocatalytic oxidation and only 20.01% of total arsenic removal efficiency]. Based on the characterizations, α-FeOOH modification plays a significant role in the promoted performances of photocatalytic oxidation and adsorption of SNT-FeOOH, leading to arsenic removal. On one hand, the Fe-O-Ti interfacial chemical interactions formed between α-FeOOH and Sn/N-codoped TiO2 can further boost the separation rate of photogenerated carriers, hence increasing the photocatalytic oxidation efficiency. On the other hand, α-FeOOH surface hydroxyl groups adsorb the generated As(V) by forming Fe-O-As bonds. The SNT-FeOOH bifunctional composites, prepared in this paper, with dual performances of photocatalytic oxidation and adsorption provide a new strategy to achieve arsenic removal from wastewater.
RESUMO
Lithium-sulfur (Li-S) batteries exhibit a huge potential in energy storage devices for the thrilling theoretical energy density (2600 Wh kg-1). Nevertheless, the serious shuttle effect rooted in polysulfides and retardative hysteresis reaction kinetics results in inferior cycling and rate performances of Li-S batteries, impeding commercial applications. In order to further promote the energy storage abilities of Li-S batteries, a unique binder-free sulfur carrier consisting of SnS2-modified multi-hole carbon nanofibers (SnS2-MHCNFs) has been constructed, where MHCNFs can offer abundant space to accommodate high-level sulfur and SnS2can promote the adsorption and catalyst capability of polysulfides, synergistically promoting the lithium-ion storage performances of Li-S batteries. After sulfur loading (SnS2-MHCNFs@S), the material was directly applied as a cathode electrode of the Li-S battery. The SnS2-MHCNFs@S electrode maintained a good discharge capacity of 921 mAh g-1after 150 cycles when the current density was 0.1 C (1 C = 1675 mA g-1), outdistancing the MHCNFs@S (629 mAh g-1) and CNFs@S (249 mAh g-1) electrodes. Meanwhile, the SnS2-MHCNFs@S electrode still exhibited a discharge capacity of 444 mAh g-1at 2 C. The good performance of SnS2-MHCNFs@S electrode indicates that combining multihole structure designation and polar material modification are highly effective methods to boost the performances of Li-S batteries.
RESUMO
BACKGROUND: The increasing use of intracardiac echocardiography (ICE) in the ablation of premature ventricular complexes (PVCs) has raised questions about its true efficacy and safety. METHODS: This retrospective study collected the periprocedural complications and PVC burden post ablation. The risk factors of PVC recurrence was further explored. RESULTS: The study included patients treated without ICE (control group, n = 451) and with ICE (ICE group, n = 155) from May 2019 to July 2022. The ICE group demonstrated significantly lower fluoroscopy times and X-ray doses. There were no major complications in the ICE group, and the difference in the occurrence of periprocedural complications between the groups was not statistically significant (p = 0.072). The long-term success rates were similar for the control and ICE groups (89.6% and 87.1%, respectively). The origin of PVCs was identified as the independent factor for ablation success. CONCLUSIONS: The use of ICE did not confer an advantage with regard to long-term success in PVCs ablation. To thoroughly evaluate the safety and effectiveness of ICE in PVCs ablation, a prospective, multicenter, randomized study is warranted.
Assuntos
Ablação por Cateter , Ecocardiografia , Recidiva , Complexos Ventriculares Prematuros , Humanos , Ablação por Cateter/efeitos adversos , Masculino , Estudos Retrospectivos , Feminino , Resultado do Tratamento , Complexos Ventriculares Prematuros/cirurgia , Complexos Ventriculares Prematuros/fisiopatologia , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/diagnóstico por imagem , Pessoa de Meia-Idade , Fatores de Tempo , Adulto , Fatores de Risco , Valor Preditivo dos Testes , Potenciais de Ação , Idoso , Frequência Cardíaca , Medição de RiscoRESUMO
OBJECTIVE: To analyze the vulnerability factors of snakebite patients in China. METHODS: Multi-stage random sampling was used as the main sampling method and snowball sampling as the auxiliary sampling method. The knowledge, attitude and behavior of snakebite among Chinese residents were investigated. Non-parametric test was used to compare the percentage differences in residents' knowledge, attitude and behavior of snakebite, and generalized linear regression analysis was used to analyze the influencing factors, and the vulnerability factors of snakebite patients were comprehensively analyzed. RESULTS: A total of 6338 subjects were included in this study, of which 68.4% were males, and 58.6% were farmers, workers and service personnel. The median total score of knowledge, attitude, and behavior was 26 (22,36). The patients who were improperly treated after injury were ligation proximal to the affected area (23.43%), squeezing (21.82%), and oral and suction wounds (8.74%). Did not go to hospital due to poverty (1351 cases) and did not receive antivenom (2068 cases). There were 21.32% and 32.63%, respectively. Among 4270 patients injected with antivenom 30.7% were vaccinated within 2 h. Among the patients who went to the hospital for treatment (4987), 75.0% arrived at the hospital within 6 h; Among the 4,761 patients who made emergency calls, 37.4% were treated within 0.5 h. CONCLUSIONS: Snakebite patients in China have weak knowledge about snakebite, low awareness of medical treatment, lack of correct prevention and emergency treatment measures, dependence on folk remedies, poor housing and so on. In addition, there are low availability of antivenoms and unreasonable distribution of medical resources in some areas of China. Multisectoral and multidisciplinary cooperation should be developed to prevent and control snakebites in order to reduce the burden caused by snakebites.
Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Mordeduras de Serpentes , Mordeduras de Serpentes/epidemiologia , Mordeduras de Serpentes/terapia , Humanos , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Antivenenos/uso terapêutico , Fatores de Risco , Inquéritos e Questionários , IdosoRESUMO
The functional traits of organisms within multispecies assemblages regulate biodiversity effects on ecosystem functioning. Yet how traits should assemble to boost multiple ecosystem functions simultaneously (multifunctionality) remains poorly explored. In a multibiome litter experiment covering most of the global variation in leaf trait spectra, we showed that three dimensions of functional diversity (dispersion, rarity, and evenness) explained up to 66% of variations in multifunctionality, although the dominant species and their traits remained an important predictor. While high dispersion impeded multifunctionality, increasing the evenness among functionally dissimilar species was a key dimension to promote higher multifunctionality and to reduce the abundance of plant pathogens. Because too-dissimilar species could have negative effects on ecosystems, our results highlight the need for not only diverse but also functionally even assemblages to promote multifunctionality. The effect of functionally rare species strongly shifted from positive to negative depending on their trait differences with the dominant species. Simultaneously managing the dispersion, evenness, and rarity in multispecies assemblages could be used to design assemblages aimed at maximizing multifunctionality independently of the biome, the identity of dominant species, or the range of trait values considered. Functional evenness and rarity offer promise to improve the management of terrestrial ecosystems and to limit plant disease risks.
Assuntos
Biodiversidade , Folhas de Planta/fisiologia , Biomassa , Ciclo do Carbono , Folhas de Planta/classificação , Fenômenos Fisiológicos VegetaisRESUMO
BACKGROUND: Sepsis-associated acute kidney injury (S-AKI) is a critical illness and is often associated with high morbidity and mortality rates. The soluble urokinase-type plasminogen activator receptor (suPAR) is an important immune mediator and is involved in kidney injury. However, its diagnostic value in S-AKI patients remains unclear. Therefore, we assessed the early predictive value of suPAR for S-AKI patients. METHODS: We prospectively enrolled adult patients, immediately after fulfilling the sepsis-3 criteria. Plasma suPAR levels at 0-, 12-, 24-, and 48-h post-sepsis diagnosis were measured. S-AKI development was the primary outcome. S-AKI risk factors were analyzed using logistic regression, and the value of plasma suPAR for early S-AKI diagnosis was assessed using receiver operating characteristic (ROC) curves. RESULTS: Of 179 sepsis patients, 63 (35.2%) developed AKI during hospitalization. At 12-, 24-, and 48-h post-sepsis diagnosis, plasma suPAR levels were significantly higher in patients with S-AKI than in patients without S-AKI (p < 0.05). The plasma suPAR had the highest area under the ROC curve of 0.700 (95% confidence interval (CI), 0.621-0.779) at 24-h post-sepsis diagnosis, at which the best discrimination ability for S-AKI was achieved with suPAR of ≥6.31 ng/mL (sensitivity 61.9% and specificity 71.6%). Logistic regression analysis showed that suPAR at 24-h post-sepsis diagnosis remained an independent S-AKI risk factor after adjusting for mechanical ventilation, blood urea nitrogen, and pH. CONCLUSIONS: The findings suggest that plasma suPAR may be a potential biomarker for early S-AKI diagnosis.
Assuntos
Injúria Renal Aguda , Sepse , Adulto , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Sepse/complicações , Sepse/diagnóstico , Biomarcadores , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Estado Terminal , Curva ROC , PrognósticoRESUMO
Antifreeze agents play a critical role in various fields including tissue engineering, gene therapy, therapeutic protein production, and transplantation. Commonly used antifreeze agents such as DMSO and other organic substances are known to have cytotoxic effects. Antifreeze proteins sourced from cold-adapted organisms offer a promising solution by inhibiting ice crystal formation; however, their effectiveness is hindered by a dynamic ice-shaping (DIS) effect and thermal hysteresis (TH) properties. In response to these limitations, antifreeze peptides (AFPs) have been developed as alternatives to antifreeze proteins, providing similar antifreeze properties without the associated drawbacks. This review explores the methods for acquiring AFPs, with a particular emphasis on chemical synthesis. It aims to offer valuable insights and practical implications to drive the realm of sub-zero storage.
Assuntos
Proteínas Anticongelantes , Proteínas Anticongelantes/química , Peptídeos/química , Peptídeos/farmacologia , Crioprotetores/química , Crioprotetores/farmacologia , Humanos , Animais , GeloRESUMO
Two enantiomeric pairs of new 3d-4f heterometallic clusters have been synthesized from two enantiomer Schiff base derivatives: (R/S)-2-[(2-hydroxy-1-phenylethylimino)methyl] phenol (R-/S-H2L). The formulae of the series clusters are Co3Ln(R-L)6 (Ln = Dy (1R), Gd (2R)), Co3Ln (S-L)6 (Ln = Dy (1S), Gd (2S)), whose crystal structures and magnetic properties have been characterized. Structural analysis indicated that the above clusters crystallize in the chiral P213 group space. The central lanthanide ion has a coordination geometry of D3 surrounded by three [CoIII(L)2]- anions using six aliphatic oxygen atoms of L2- featuring a star-shaped [CoIII3LnIII] configuration. Magnetic measurements showed the presence of slow magnetic relaxation with an effective energy barrier of 22.33 K in the DyIII derivatives under a zero-dc field. Furthermore, the circular dichroism (CD) spectra of 1R and 1S confirmed their enantiomeric nature.
RESUMO
The electrochemical activity and stability of the PBCO electrode are investigated under the annealing processes in an atmosphere containing CO2/H2O for solid oxide fuel cells (SOFCs). The electrochemical impedance spectrum results unequivocally confirm the significant deterioration in PBCO cathode performance upon annealing under ambient air conditions, particularly when exposed to CO2/H2O atmospheres. Microstructure and surface chemical state analyses reveal the segregation of BaO on the PBCO surface, and the formation of insulating BaCO3 degraded the electrochemical performance. CO2 and H2O exhibit a significant induced effect on the segregation of Ba in PBCO to the surfaces, thereby causing a rapid decline in electrode performance. Additionally, the analysis of volume relaxation reveals that the presence of oxygen in the electrode environment can also influence the deposition process occurring on the surface of the electrode. However, this phenomenon is not observed in N2. This study emphasizes the impact of various gases present in the working atmosphere on surface-separated BaO, which consequently plays a pivotal role in the activity and long-term stability of PBCO electrodes.
RESUMO
In this study, the clinical implications and potential functions of necroptosis-related genes (NRGs) in melanoma were systematically characterized. A novel NRG signature was then constructed to analyze the immune status and prognosis of patients with melanoma. The NRG signatures for melanoma prognosis were searched using the Cancer Genome Atlas (TCGA) dataset and followed by stepwise Cox regression analysis. Patients with melanoma were divided into two groups, and survival analysis, receiver operating characteristic (ROC), and univariate and multivariate analyses were subsequently performed. The correlation of risk score (RS) with tumor immunity and RT-polymerase chain reaction (PCR) was analyzed to further verify the gene signatures. Data on tumor mutational burden (TMB) and chromosomal copy number variation (CNV) were analyzed. Three NRGs were identified as prognostic risk signatures and were significantly related to overall survival (OS) in melanoma. The signatures had better diagnostic accuracy. Furthermore, analysis of mutations in the NRGs and the incidence of chromosomal CNV helped to reveal the relationship between mutations and melanoma occurrence. A nomogram was established based on RSs. The risk characteristics were significantly associated with immunity and high risk is closely correlated with melanoma development. In vitro experiments revealed that necrostatin-1 (Nec-1) promoted cell viability and repressed the expression levels of interleukin (IL)12A and proprotein convertase subtilisin/kexin type (PCSK)1. Additionally, the expression levels of IL12A, CXCL10, and PCSK1 decreased in tumor tissues of melanoma patients. NRGs exert vital roles in immunity and might be applied as a prognostic factor of melanoma.
Assuntos
Variações do Número de Cópias de DNA , Melanoma , Humanos , Prognóstico , Necroptose/genética , Melanoma/genética , MutaçãoRESUMO
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.
RESUMO
Mushroom leaves (MLs) are malformed leaves that develop from the leaf veins in some of Chinese kale genotypes. To study the genetic model and molecular mechanism of ML development in Chinese kale, the F2 segregation population was constructed by two inbred lines, genotype Boc52 with ML and genotype Boc55 with normal leaves (NL). In the present study, we have identified for the first time that the development of mushroom leaves may be affected by the change of adaxial-abaxial polarity of leaves. Examination of the phenotypes of F1 and F2 segregation populations suggested that ML development is controlled by two dominant major genes inherited independently. BSA-seq analysis showed that a major quantitative trait locus (QTL) qML4.1 that controls ML development is located within 7.4 Mb on chromosome kC4. The candidate region was further narrowed to 255 kb by linkage analysis combined with insertion/deletion (InDel) markers, and 37 genes were predicted in this region. According to the expression and annotation analysis, a B3 domain-containing transcription factor NGA1-like gene, BocNGA1, was identified as a key candidate gene for controlling ML development in Chinese kale. Fifteen single nucleotide polymorphisms (SNPs) were found in coding sequences and 21 SNPs and 3 InDels found in the promoter sequences of BocNGA1 from the genotype Boc52 with ML. The expression levels of BocNGA1 in ML genotypes are significantly lower than in the NL genotypes, which suggests that BocNGA1 may act as a negative regulator for ML genesis in Chinese kale. This study provides a new foundation for Chinese kale breeding and for the study of the molecular mechanism of plant leaf differentiation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01364-6.