Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926586

RESUMO

Chiral superconductors, a unique class of unconventional superconductors in which the complex superconducting order parameter winds clockwise or anticlockwise in the momentum space1, represent a topologically non-trivial system with intrinsic time-reversal symmetry breaking (TRSB) and direct implications for topological quantum computing2,3. Intrinsic chiral superconductors are extremely rare, with only a few arguable examples, including UTe2, UPt3 and Sr2RuO4 (refs. 4-7). It has been suggested that chiral superconductivity may exist in non-centrosymmetric superconductors8,9, although such non-centrosymmetry is uncommon in typical solid-state superconductors. Alternatively, chiral molecules with neither mirror nor inversion symmetry have been widely investigated. We suggest that an incorporation of chiral molecules into conventional superconductor lattices could introduce non-centrosymmetry and help realize chiral superconductivity10. Here we explore unconventional superconductivity in chiral molecule intercalated TaS2 hybrid superlattices. Our studies reveal an exceptionally large in-plane upper critical field Bc2,|| well beyond the Pauli paramagnetic limit, a robust π-phase shift in Little-Parks measurements and a field-free superconducting diode effect (SDE). These experimental signatures of unconventional superconductivity suggest that the intriguing interplay between crystalline atomic layers and the self-assembled chiral molecular layers may lead to exotic topological materials. Our study highlights that the hybrid superlattices could lay a versatile path to artificial quantum materials by combining a vast library of layered crystals of rich physical properties with the nearly infinite variations of molecules of designable structural motifs and functional groups11.

2.
Nano Lett ; 24(7): 2181-2187, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340079

RESUMO

Recently discovered as an intrinsic antiferromagnetic topological insulator, MnBi2Te4 has attracted tremendous research interest, as it provides an ideal platform to explore the interplay between topological and magnetic orders. MnBi2Te4 displays distinct exotic topological phases that are inextricably linked to the different magnetic structures of the material. In this study, we conducted electrical transport measurements and systematically investigated the anomalous Hall response of epitaxial MnBi2Te4 films when subjected to an external magnetic field sweep, revealing the different magnetic structures stemming from the interplay of applied fields and the material's intrinsic antiferromagnetic (AFM) ordering. Our results demonstrate that the nonsquare anomalous Hall loop is a consequence of the distinct reversal processes within individual septuple layers. These findings shed light on the intricate magnetic structures in MnBi2Te4 and related materials, offering insights into understanding their transport properties and facilitating the implementation of AFM topological electronics.

3.
Phys Rev Lett ; 132(14): 146601, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640375

RESUMO

The layer-dependent Chern number (C) in MnBi_{2}Te_{4} is characterized by the presence of a Weyl semimetal state in the ferromagnetic coupling. However, the influence of a key factor, namely, the exchange coupling, remains unexplored. This study focuses on characterizing the C=2 state in MnBi_{2}Te_{4}, which is classified as a higher C state resulting from the anomalous n=0 Landau levels (LLs). Our findings demonstrate that the exchange coupling parameter strongly influences the formation of this Chern state, leading to a competition between the C=1 and 2 states. Moreover, the emergence of odd-even LL sequences, resulting from the breaking of LL degeneracy, provides compelling evidence for the strong exchange coupling strength. These findings highlight the significance of the exchange coupling in understanding the behavior of Chern states and LLs in magnetic quantum systems.

4.
Nano Lett ; 23(23): 10802-10810, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029283

RESUMO

Quantum coherence of electrons can produce striking behaviors in mesoscopic conductors. Although magnetic order can also strongly affect transport, the combination of coherence and magnetic order has been largely unexplored. Here, we examine quantum coherence-driven universal conductance fluctuations in the antiferromagnetic, canted antiferromagnetic, and ferromagnetic phases of a thin film of the topological material MnBi2Te4. In each magnetic phase, we extract a charge carrier phase coherence length of about 100 nm. The conductance magnetofingerprint is repeatable when sweeping applied magnetic field within one magnetic phase. Surprisingly, in the antiferromagnetic and canted antiferromagnetic phases, but not in the ferromagnetic phase, the magnetofingerprint depends on the direction of the field sweep. To explain our observations, we suggest that conductance fluctuation measurements are sensitive to the motion and nucleation of magnetic domain walls in MnBi2Te4.

5.
Nat Mater ; 21(1): 15-23, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949869

RESUMO

Topological electronic materials, such as topological insulators, are distinct from trivial materials in the topology of their electronic band structures that lead to robust, unconventional topological states, which could bring revolutionary developments in electronics. This Perspective summarizes developments of topological insulators in various electronic applications including spintronics and magnetoelectronics. We group and analyse several important phenomena in spintronics using topological insulators, including spin-orbit torque, the magnetic proximity effect, interplay between antiferromagnetism and topology, and the formation of topological spin textures. We also outline recent developments in magnetoelectronics such as the axion insulator and the topological magnetoelectric effect observed using different topological insulators.

6.
Phys Rev Lett ; 130(8): 086703, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898091

RESUMO

Unidirectional spin Hall magnetoresistance (USMR) has been widely reported in the heavy metal/ferromagnet bilayer systems. We observe the USMR in Pt/α-Fe_{2}O_{3} bilayers where the α-Fe_{2}O_{3} is an antiferromagnetic (AFM) insulator. Systematic field and temperature dependent measurements confirm the magnonic origin of the USMR. The appearance of AFM-USMR is driven by the imbalance of creation and annihilation of AFM magnons by spin orbit torque due to the thermal random field. However, unlike its ferromagnetic counterpart, theoretical modeling reveals that the USMR in Pt/α-Fe_{2}O_{3} is determined by the antiferromagtic magnon number with a non-monotonic field dependence. Our findings extend the generality of the USMR which pave the ways for the highly sensitive detection of AFM spin state.

7.
Proc Natl Acad Sci U S A ; 117(1): 238-242, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852824

RESUMO

With the recent discovery of the quantum anomalous Hall insulator (QAHI), which exhibits the conductive quantum Hall edge states without external magnetic field, it becomes possible to create a topological superconductor (SC) by introducing superconductivity into these edge states. In this case, 2 distinct topological superconducting phases with 1 or 2 chiral Majorana edge modes were theoretically predicted, characterized by Chern numbers (N) of 1 and 2, respectively. We present spectroscopic evidence from Andreev reflection experiments for the presence of chiral Majorana modes in an Nb/(Cr0.12Bi0.26Sb0.62)2Te3 heterostructure with distinct signatures attributed to 2 different topological superconducting phases. The results are in qualitatively good agreement with the theoretical predictions.

8.
Nano Lett ; 22(14): 5735-5741, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35850534

RESUMO

Topological surface states are a new class of electronic states with novel properties, including the potential for annihilation between surface states from two topological insulators at a common interface. Here, we report the annihilation and creation of topological surface states in the SnTe/Crx(BiSb)2-xTe3 (CBST) heterostructures as evidenced by magneto-transport, polarized neutron reflectometry, and first-principles calculations. Our results show that topological surface states are induced in the otherwise topologically trivial two-quintuple-layers thick CBST when interfaced with SnTe, as a result of the surface state annihilation at the SnTe/CBST interface. Moreover, we unveiled systematic changes in the transport behaviors of the heterostructures with respect to changing Fermi level and thickness. Our observation of surface state creation and annihilation demonstrates a promising way of designing and engineering topological surface states for dissipationless electronics.

9.
Phys Rev Lett ; 128(21): 217704, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687463

RESUMO

The quantum anomalous Hall (QAH) effect has been demonstrated in two-dimensional topological insulator systems incorporated with ferromagnetism. However, a comprehensive understanding of mesoscopic transport in submicron QAH devices has not yet been established. Here we fabricated miniaturized QAH devices with channel widths down to 600 nm, where the QAH features are still preserved. A backscattering channel is formed in narrow QAH devices through percolative hopping between 2D compressible puddles. Large resistance fluctuations are observed in narrow devices near the coercive field, which is associated with collective interference between intersecting paths along domain walls when the device geometry is smaller than the phase coherence length L_{ϕ}. Through measurement of size-dependent breakdown current, we confirmed that the chiral edge states are confined at the physical boundary with its width on the order of Fermi wavelength.

10.
Phys Rev Lett ; 129(24): 246602, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563259

RESUMO

Ideally, quantum anomalous Hall systems should display zero longitudinal resistance. Yet in experimental quantum anomalous Hall systems elevated temperature can make the longitudinal resistance finite, indicating dissipative flow of electrons. Here, we show that the measured potentials at multiple locations within a device at elevated temperature are well described by solution of Laplace's equation, assuming spatially uniform conductivity, suggesting nonequilibrium current flows through the two-dimensional bulk. Extrapolation suggests that at even lower temperatures current may still flow primarily through the bulk rather than, as had been assumed, through edge modes. An argument for bulk current flow previously applied to quantum Hall systems supports this picture.

11.
Nano Lett ; 21(1): 515-521, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33338380

RESUMO

Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: how can the symmetry of the perpendicular magnetic moment be broken by the in-plane spin polarization? Here, we show that the chiral symmetry breaking by the antisymmetric Dzyaloshinskii-Moriya interaction (DMI) can induce the deterministic SOT switching of the perpendicular magnetization. By introducing a gradient of saturation magnetization or magnetic anisotropy, the dynamic noncollinear spin textures are formed under the current-driven SOT, and thus, the chiral symmetry of these dynamic spin textures is broken by the DMI, resulting in the deterministic magnetization switching. We introduce a strategy to induce an out-of-plane (z) gradient of magnetic properties as a practical solution for the wafer-scale manufacture of SOT devices.

12.
Nanotechnology ; 32(50)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33657540

RESUMO

We present a magnetic implementation of a thermodynamic computing fabric. Magnetic devices within computing cores harness thermodynamics through its voltage-controlled thermal stability; while the evolution of network states is guided by the spin-orbit-torque effect. We theoretically derive the dynamics of the cores and show that the computing fabric can successfully compute ground states of a Boltzmann Machine. Subsequently, we demonstrate the physical realization of these devices based on a CoFeB-MgO magnetic tunnel junction structure. The results of this work pave the path towards the realization of highly efficient, high-performance thermodynamic computing hardware. Finally, this paper will also give a perspective of computing beyond thermodynamic computing.

13.
Nano Lett ; 20(5): 3703-3709, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227904

RESUMO

Spin-orbit torque (SOT) switching of magnetization is a promising emerging technology for nonvolatile spintronic memory and logic applications. However, deterministic switching of perpendicular magnetization with SOTs requires an additional symmetry breaking, which is typically provided by an external magnetic field, making it impractical for applications. In this work, we disclose that by the insertion of a slightly asymmetric light-metal layer at the heavy metal-ferromagnet interface of SOT heterostructures, current-induced out-of-plane effective magnetic fields are introduced that enable deterministic switching without an external magnetic field. We obtain uniform perpendicular magnetic anisotropy and switching current density despite the asymmetry of the light-metal layer, and we show the scalability of our approach by studying device sizes that differ by 2 orders of magnitude. Our work provides a practical route for utilization of SOTs for magnetization switching on the wafer scale and paves the way for the practical application of SOT-based technology.

14.
Phys Rev Lett ; 125(2): 027206, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701308

RESUMO

Noninteracting particles exhibiting Brownian motion have been observed in many occasions of sciences, such as molecules suspended in liquids, optically trapped microbeads, and spin textures in magnetic materials. In particular, a detailed examination of Brownian motion of spin textures is important for designing thermally stable spintronic devices, which motivates the present study. In this Letter, through using temporally and spatially resolved polar magneto-optic Kerr effect microscopy, we have experimentally observed the thermal fluctuation-induced random walk of a single isolated Néel-type magnetic skyrmion in an interfacially asymmetric Ta/CoFeB/TaO_{x} multilayer. An intriguing topology-dependent Brownian gyromotion behavior of skyrmions has been identified. The onset of Brownian gyromotion of a single skyrmion induced by thermal effects, including a nonlinear temperature-dependent diffusion coefficient and topology-dependent gyromotion are further formulated based on the stochastic Thiele equation. The experimental and numerical demonstration of topology-dependent Brownian gyromotion of skyrmions can be useful for understanding the nonequilibrium magnetization dynamics and implementing spintronic devices.

15.
Nano Lett ; 19(12): 8621-8629, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31697502

RESUMO

Magnetic tunnel junctions (MTJs) capable of electrical read and write operations have emerged as a canonical building block for nonvolatile memory and logic. However, the cause of the widespread device properties found experimentally in various MTJ stacks, including tunneling magnetoresistance (TMR), perpendicular magnetic anisotropy (PMA), and voltage-controlled magnetic anisotropy (VCMA), remains elusive. Here, using high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy, we found that the MTJ crystallization quality, boron diffusion out of the CoFeB fixed layer, and minimal oxidation of the fixed layer correlate with the TMR. As with the CoFeB free layer, seed layer diffusion into the free layer/MgO interface is negatively correlated with the interfacial PMA, whereas the metal-oxides concentrations in the free layer correlate with the VCMA. Combined with formation enthalpy and thermal diffusion analysis that can explain the evolution of element distribution from MTJ stack designs and annealing temperatures, we further established a predictive materials design framework to guide the complex design space explorations for high-performance MTJs. On the basis of this framework, we demonstrate experimentally high PMA and VCMA values of 1.74 mJ/m2 and 115 fJ/V·m-1 with annealing stability above 400 °C.

16.
Nano Lett ; 19(2): 692-698, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30685979

RESUMO

Nonlinear unidirectional spin Hall magnetoresistance (USMR) has been reported in heavy metal/ferromagnet bilayers, which could be employed as an effective method in detecting the magnetization orientation in spintronic devices with two-terminal geometry. Recently, another unidirectional magnetoresistance (UMR) was reported in magnetic topological insulator (TI)-based heterostructures at cryogenic temperature, whose amplitude is orders of magnitude larger than the USMR measured in heavy metal-based magnetic heterostructures at room temperature. Here, we report the UMR effect in the modulation-doped magnetic TI structures. This UMR arises due to the interplay between the magnetic dopant's magnetization and the current-induced surface spin polarization, when they are parallel or antiparallel to each other in the TI material. By varying the dopant's position in the structure, we reveal that the UMR is mainly originating from the interaction between the magnetization and the surface spin-polarized carriers (not bulk carriers). Furthermore, from the magnetic field-, the angular rotation-, and the temperature-dependence, we highlight the correlation between the UMR effect and the magnetism in the structures. The large UMR versus current ratio in TI-based magnetic bilayers promises the easy readout in TI-based spintronic devices with two-terminal geometry.

17.
Nano Lett ; 19(10): 6765-6771, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545901

RESUMO

Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D-3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D-3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano-Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano-Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers.

18.
Phys Rev Lett ; 122(10): 106602, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932676

RESUMO

We show that the spin-orbit coupling (SOC) in α-MnTe impacts the transport behavior by generating an anisotropic valence-band splitting, resulting in four spin-polarized pockets near Γ. A minimal k·p model is constructed to capture this splitting by group theory analysis, a tight-binding model, and ab initio calculations. The model is shown to describe the rotation symmetry of the zero-field planer Hall effect (PHE). The PHE originates from the band anisotropy given by SOC, and is quantitatively estimated to be 25%-31% for an ideal thin film with a single antiferromagnetic domain.

19.
Phys Rev Lett ; 123(20): 207205, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809108

RESUMO

Spin-momentum locked surface states in topological insulators (TIs) provide a promising route for achieving high spin-orbit torque (SOT) efficiency beyond the bulk spin-orbit coupling in heavy metals (HMs). However, in previous works, there is a huge discrepancy among the quantitative SOTs from TIs in various systems determined by different methods. Here, we systematically study the SOT in the TI(HM)/Ti/CoFeB/MgO systems by the same method, and make a conclusive assessment of SOT efficiency for TIs and HMs. Our results demonstrate that TIs show more than one order of magnitude higher SOT efficiency than HMs even at room temperature, at the same time the switching current density as low as 5.2×10^{5} A cm^{-2} is achieved with (Bi_{1-x}Sb_{x})_{2}Te_{3}. Furthermore, we investigate the relationship between SOT efficiency and the position of Fermi level in (Bi_{1-x}Sb_{x})_{2}Te_{3}, where the SOT efficiency is significantly enhanced near the Dirac point, with the most insulating bulk and conducting surface states, indicating the dominating SOT contribution from topological surface states. This work unambiguously demonstrates the ultrahigh SOT efficiency from topological surface states.

20.
Nano Lett ; 18(2): 980-986, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29271208

RESUMO

Magnetic skyrmions as swirling spin textures with a nontrivial topology have potential applications as magnetic memory and storage devices. Since the initial discovery of skyrmions in non-centrosymmetric B20 materials, the recent effort has focused on exploring room-temperature skyrmions in heavy metal and ferromagnetic heterostructures, a material platform compatible with existing spintronic manufacturing technology. Here, we report the surprising observation that a room-temperature skyrmion phase can be stabilized in an entirely different class of systems based on antiferromagnetic (AFM) metal and ferromagnetic (FM) metal IrMn/CoFeB heterostructures. There are a number of distinct advantages of exploring skyrmions in such heterostructures including zero-field stabilization, tunable antiferromagnetic order, and sizable spin-orbit torque (SOT) for energy-efficient current manipulation. Through direct spatial imaging of individual skyrmions, quantitative evaluation of the interfacial Dzyaloshinskii-Moriya interaction, and demonstration of current-driven skyrmion motion, our findings firmly establish the AFM/FM heterostructures as a promising material platform for exploring skyrmion physics and device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA