Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(14): e2206044, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670072

RESUMO

For a long time, optical imaging of the deep brain with high resolution has been a challenge. Recently, with the advance in second near-infrared (NIR-II) bioimaging techniques and imaging contrast agents, NIR-II window bioimaging has attracted great attention to monitoring deeper biological or pathophysiological processes with high signal-to-noise ratio (SNR) and spatiotemporal resolution. Assisted with NIR-II bioimaging, the modulation of structure and function of brain is promising to be noninvasive and more precise. Herein, in this review, first the advantage of NIR-II light in brain imaging from the interaction between NIR-II and tissue is elaborated. Then, several specific NIR-II bioimaging technologies are introduced, including NIR-II fluorescence imaging, multiphoton fluorescence imaging, and photoacoustic imaging. Furthermore, the corresponding contrast agents are summarized. Next, the application of various NIR-II bioimaging technologies in visualizing the characteristics of cerebrovascular network and monitoring the changes of the pathology signals will be presented. After that, the modulation of brain structure and function based on NIR-II bioimaging will be discussed, including treatment of glioblastoma, guidance of cell transplantation, and neuromodulation. In the end, future perspectives that would help improve the clinical translation of NIR-II light are proposed.


Assuntos
Meios de Contraste , Glioblastoma , Humanos , Corantes Fluorescentes/química , Encéfalo , Imagem Óptica/métodos
2.
Nano Lett ; 22(14): 5944-5953, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35816764

RESUMO

A combined treatment using medication and electrostimulation increases its effectiveness in comparison with one treatment alone. However, the organic integration of two strategies in one miniaturized system for practical usage has seldom been reported. This article reports an implantable electronic medicine based on bioresorbable microneedle devices that is activated wirelessly for electrostimulation and sustainable delivery of anti-inflammatory drugs. The electronic medicine is composed of a radio frequency wireless power transmission system and a drug-loaded microneedle structure, all fabricated with bioresorbable materials. In a rat skeletal muscle injury model, periodic electrostimulation regulates cell behaviors and tissue regeneration while the anti-inflammatory drugs prevent inflammation, which ultimately enhance the skeletal muscle regeneration. Finally, the electronic medicine is fully bioresorbable, excluding the second surgery for device removal.


Assuntos
Implantes Absorvíveis , Terapia por Estimulação Elétrica , Animais , Sistemas de Liberação de Medicamentos , Eletrônica Médica , Ondas de Rádio , Ratos , Tecnologia sem Fio
3.
Opt Lett ; 47(3): 641-644, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103693

RESUMO

Complexities of the underwater environment can seriously affect many underwater detection means, especially the influence of light scattering by water. To solve this problem, a three-dimensional (3D) morphology measurement method is proposed based on the photoacoustic effect. In this method, a measurement object is irradiated with pulsed laser light to produce ultrasonic waves via the photoacoustic effect. A probe collects the ultrasonic signal and subsequent data processing can yield complete object detection. This approach can make full use of the advantages of high precision and good directivity of laser ranging and completely avoid the influence on the laser of backscattering from water. The results yield a displacement measurement accuracy of less than 0.5 mm and an average error of 3D reconstruction of 0.21 mm, demonstrating great application potential.

4.
Opt Lett ; 47(15): 3732-3735, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913301

RESUMO

Accurate identification and quantification of microvascular patterns are important for clinical diagnosis and therapeutic monitoring using optical-resolution photoacoustic microscopy (OR-PAM). Due to its limited depth of field, conventional OR-PAM may not fully reveal microvascular patterns with enough details in depth range, which affects the segmentation and quantification. Here, we propose a robust vascular quantification approach via combining multi-focus image fusion with enhancement filtering (MIFEF). The multi-focus image fusion is constructed based on multi-scale gradients and image matting to improve image fusion quality by considerably achieving accurate focus measurement for initial segmentation as well as decision map refinement. The enhancement filtering identifies the vessels and handles noise without deforming microvasculature. The performance of the MIFEF were evaluated employing a leaf phantom, mouse livers and brains. The proposed method for OR-PAM can significantly facilitate the clinical provision of optical biopsy of vascular-related diseases.


Assuntos
Microscopia , Técnicas Fotoacústicas , Animais , Aumento da Imagem , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Microscopia/métodos , Microvasos , Técnicas Fotoacústicas/métodos , Análise Espectral
5.
Small ; 17(23): e2100501, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33896106

RESUMO

Exploration of facile strategies for precise regulation of target gene expression remains highly challenging in the development of gene therapies. Especially, a stimuli-responsive nanocarrier integrated with ability of noninvasive remote control for treating wide types of cancers is rarely developed. Herein, a NIR-II absorbing semiconducting polymer (PBDTQ) is employed to remotely activate the heat-inducible heat-shock protein 70 (HSP70) promoter under laser irradiation, further realizing regulation of gene-directed enzyme prodrug therapy (GDEPT) for cancer treatment in mild hyperthermia. In this multifunctional nanocomposite, the PBDTQ and double suicide gene plasmid (pSG) based on HSP70 promoter are incorporated into a lipid complex. Upon NIR-II laser excitation, the mild photothermal effect (≈43 °C) generated from PBDTQ can cause the release of pSG and activation of HSP70 promoter, and then upregulate suicide gene expression triggered by the HSP70 promoter which can further convert the nontoxic prodrug into its cytotoxic metabolites. Therefore, this work demonstrates a universal NIR-II laser-triggered GDEPT using semiconducting polymers as the photothermal generator for cancer treatment with minimized collateral damage and nontargeted side effects.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Fototerapia , Polímeros , Semicondutores
6.
Small ; 16(41): e1906908, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32954642

RESUMO

Precise delivery of therapeutic cells to the desired site in vivo is an emerging and promising cellular therapy in precision medicine. This paper presents the development of a magnet-driven and image-guided degradable microrobot that can precisely deliver engineered stem cells for orthotopic liver tumor treatment. The microrobot employs a burr-like porous sphere structure and is made with a synthesized composite to fulfill degradability, mechanical strength, and magnetic actuation capability simultaneously. The cells can be spontaneously released from the microrobots on the basis of the optimized microrobot structure. The microrobot is actuated by a gradient magnetic field and guided by a unique photoacoustic imaging technology. In preclinical experiments on nude mice, microrobots carrying cells are injected via the portal vein and the released cells from the microrobots can inhibit the tumor growth greatly. This paper reveals for the first time of using degradable microrobots for precise delivery of therapeutic cells in vascular tissue and demonstrates its therapeutic effect in preclinical test.


Assuntos
Imãs , Neoplasias , Animais , Magnetismo , Camundongos , Camundongos Nus , Neoplasias/terapia , Células-Tronco
7.
Opt Express ; 28(6): 8744-8752, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225493

RESUMO

Photoacoustic computed tomography (PACT) can ultrasonically image optical absorbers in biological tissues by using a linear piezoelectric transducer array, but some features can not be visualized as a result of the limited acceptance angle. The optical ultrasound sensors for photoacoustic imaging have received great interests, because of their compact sizes, comparable sensitivities to their electric counterparts, as well as the extended field/angle-of-view. In this work, we have developed a PACT system based on a fiber-laser based ultrasound sensor. Two-dimensional imaging was performed by horizontally scanning the sensor and image reconstruction via back projection, and three-dimensional imaging was further achieved by repeating such scanning process at multiple angles, based on inverse Radon transform. The axial and lateral resolutions are 93 and 220 µm in three-dimensional imaging. The fiber-based PACT can resolve more features than that with a piezoelectric transducer array, taking advantage of the dual-60-degree vision angles of the sensor.


Assuntos
Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Desenho de Equipamento , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Lasers , Fibras Ópticas , Fenômenos Ópticos , Técnicas Fotoacústicas/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Ultrassom
8.
Opt Lett ; 45(3): 628-631, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004269

RESUMO

Limited by the numerical aperture of ultrasonic detection, optical resolution photoacoustic microscopy (OR-PAM) has not achieved optimal sensitivity. To address this problem, we have developed a high acoustic numerical aperture ($ {\sim} 0.74 $∼0.74) OR-PAM (HNA-OR-PAM). Via engineering the acoustic lens, we implement the highest acoustic numerical aperture that a spherical concave lens can achieve. The sensitivity of HNA-OR-PAM is improved to around 160%-the state-of-the-art OR-PAM. Without averaging, the new system can image oxygen saturation in vivo with only 10-nJ pulse energy. The improved sensitivity allows us to image weaker absorbers, penetrate deeper, and reduce nonlinear effects induced by high pulse energy. Moreover, the photoacoustic view angle is augmented to 51.8 deg and makes tilted features more visible. We validate the improved view angle in both a phantom study and brain imaging.

9.
Opt Lett ; 45(7): 1850-1853, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236015

RESUMO

Photoacoustic microscopy (PAM) can label-free image oxy- and deoxy-hemoglobin (${{\rm HbO}_2}$HbO2 and Hb) concentrations in vivo, providing useful information for metabolic researches and diagnostic applications. Conventional PAM assumes a linear relationship between the photoacoustic amplitude and the absorption coefficient. However, many factors, including absorber size, laser pulse width, and frequency response of the ultrasound transducer, may affect the measured acoustic spectrum and the shape of the temporal photoacoustic signal. The ultrasound transducer may weigh the blood vessels differently according to their diameters. In addition, the pulse width also affects the photoacoustic signal amplitude. These factors may cause inaccurate measurement of Hb and ${{\rm HbO}_2}$HbO2 concentrations. To address this issue, we develop an acoustic-spectrum-compensated optical-resolution PAM (OR-PAM) that corrects the nonuniform acoustic spectrum and makes the quantitative results to be independent of the vessel diameter and pulse width. In dual-wavelength OR-PAM, we demonstrate that the acoustic spectrum compensation can improve the accuracy of oxygen saturation imaging by $\sim{15}\% $∼15%.

10.
Opt Lett ; 45(15): 4312-4315, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735286

RESUMO

The conventional photoacoustic microscopy (PAM) system allows trade-offs between lateral resolution and imaging depth, limiting its applications in biological imaging in vivo. Here we present an integrated optical-resolution (OR) and acoustic-resolution (AR) multiscale PAM based on free-space light transmission and fast microelectromechanical systems (MEMS) scanning. The lateral resolution for OR is 4.9 µm, and the lateral resolution for AR is 114.5 µm. The maximum imaging depth for OR is 0.7 mm, and the maximum imaging depth for AR is 4.1 mm. The imaging speed can reach 50 k Alines per second. The high signal-to-noise ratios and wavelength throughput are achieved by delivering light via free-space, and the high speed is achieved by a MEMS scanning mirror. The blood vasculature from superficial skin to the deep tissue of a mouse leg was imaged in vivo using two different resolutions to demonstrate the multiscale imaging capability.

11.
Anal Bioanal Chem ; 412(25): 6947-6957, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712812

RESUMO

The potassium ion (K+) plays significant roles in many biological processes. To date, great efforts have been devoted to the development of K+ sensors for colorimetric, fluorescent, and photoacoustic detection of K+ separately. However, the development of molecular K+ probes for colorimetric detection of urinary K+, monitoring K+ fluxes in living cells by fluorescence imaging, and photoacoustic imaging of K+ dynamics in deep tissues still remains an open challenge. Herein, we report the first molecular K+ probe (NK2) for colorimetric, fluorescent, and photoacoustic detection of K+. NK2 is composed of 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as the chromophore and phenylazacrown-6-lariat ether (ACLE) as the K+ recognition unit. Predominate features of NK2 include a short synthetic procedure, high K+ selectivity, large detection range (5-200 mM), and triple-channel detection manner. NK2 shows good response to K+ with obvious color changes, fluorescence enhancements (about threefold), and photoacoustic intensity changes. The existence of other metal ions (including Na+, Mg2+, Ca2+, Fe2+) and pH changes (6.5-9.0) have no obvious influence on K+ sensing of NK2. Portable test strips stained by NK2 can be used to qualitatively detect urinary K+ by color changes for self-diagnosis of diseases induced by high levels of K+. NK2 can be utilized to monitor K+ fluxes in living cells by fluorescent imaging. We also find its excellent performance in photoacoustic imaging of different K+ concentrations in the mouse ear. NK2 is the first molecular K+ probe for colorimetric, fluorescent, and photoacoustic detection of K+ in urine, in living cells, and in the mouse ear. The development of NK2 will broaden K+ probes' design and extend their applications to different fields. Graphical abstract.


Assuntos
Colorimetria/métodos , Sondas Moleculares/química , Técnicas Fotoacústicas/métodos , Potássio/análise , Espectrometria de Fluorescência/métodos , Animais , Células HeLa , Humanos , Camundongos
12.
Angew Chem Int Ed Engl ; 59(51): 23268-23276, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32889780

RESUMO

Photoacoustic agents have been of vital importance for improving the imaging contrast and reliability against self-interference from endogenous substances. Herein, we synthesized a series of thiadiazoloquinoxaline (TQ)-based semiconducting polymers (SPs) with a broad absorption covering from NIR-I to NIR-II regions. Among them, the excited s-BDT-TQE, a repeating unit of SPs, shows a large dihedral angle and narrow adiabatic energy as well as low radiative decay, attributing to its strongly electron-deficient ester-substituted TQ-segment. In addition, its more vigorous molecular motions trigger a higher reorganization energy that further yields an efficient photoinduced nonradiative decay, which has been carefully examined and understood by theoretical calculation. Thus, BDT-TQE SP-cored nanoparticles with twisted intramolecular charge transfer (TICT) feature exhibit a high NIR-II photothermal conversion efficiency (61.6 %) and preferable PA tracking of in situ hepatic tumor growth for more than 20 days. This study highlights a unique strategy for constructing efficient NIR-II photoacoustic agents via TICT-enhanced PNRD effect, advancing their applications for in vivo bioimaging.


Assuntos
Antineoplásicos/química , Compostos Azo/química , Ésteres/química , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas , Polímeros/química , Quinoxalinas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Azo/síntese química , Compostos Azo/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Nanopartículas/química , Neoplasias/tratamento farmacológico , Terapia Fototérmica , Polímeros/síntese química , Polímeros/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Semicondutores
13.
Angew Chem Int Ed Engl ; 59(28): 11298-11302, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285540

RESUMO

It remains highly challenging to identify small molecule-based photothermal agents with a high photothermal conversion efficiency (PTCE). Herein, we adopt a double bond-based molecular motor concept to develop a new class of small photothermal agents to break the current design bottleneck. As the double-bond is twisted by strong twisted intramolecular charge transfer (TICT) upon irradiation, the excited agents can deactivate non-radiatively through the conical intersection (CI) of internal conversion, which is called photoinduced nonadiabatic decay. Such agents possess a high PTCE of 90.0 %, facilitating low-temperature photothermal therapy in the presence of a heat shock protein 70 inhibitor. In addition, the behavior and mechanism of NIR laser-triggered molecular motions for generating heat through the CI pathway have been further understood through theoretical and experimental evidence, providing a design principle for highly efficient photothermal and photoacoustic agents.


Assuntos
Raios Infravermelhos , Neoplasias/terapia , Terapia Fototérmica , Termodinâmica , Animais , Temperatura Baixa , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Camundongos , Nanopartículas/química , Análise Espectral/métodos
14.
Nat Methods ; 13(1): 67-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26550774

RESUMO

Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ∼ 100-µm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ∼ 140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales.


Assuntos
Acústica , Fitocromo/química , Tomografia/métodos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
15.
Phys Rev Lett ; 122(19): 193904, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144963

RESUMO

Acquiring ultrafast and high spectral resolution optical images is key to measure transient physical or chemical processes, such as photon propagation, plasma dynamics, and femtosecond chemical reactions. At a trillion Hz frame rate, most ultrafast imaging modalities can acquire only a limited number of frames. Here, we present a compressed ultrafast spectral-temporal (CUST) photographic technique, enabling both an ultrahigh frame rate of 3.85 trillion Hz and a large frame number. We demonstrate that CUST photography records 60 frames, enabling precisely recording light propagation, reflection, and self-focusing in nonlinear media over 30 ps. CUST photography has the potential to further increase the frame number beyond hundreds of frames. Using spectral-temporal coupling, CUST photography can record multiple frames with a subnanometer spectral resolution with a single laser exposure, enabling ultrafast spectral imaging. CUST photography with high frame rate, high spectral resolution, and high frame number in a single modality offer a new tool for observing many transient phenomena with high temporal complexity and high spectral precision.

16.
Nanotechnology ; 30(41): 414001, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31247596

RESUMO

Flexible and stretchable electronics have attracted increasing attention and been widely used in wearable devices and electronic skins, where the circuits for flexible and stretchable electronics are typically in-plane-based 2D geometries. Here, we introduce a 3D microprinting technology that can expand one more dimension of the circuit in flexible electronics. We fabricated three-dimensional serpentine microstructures based on direct laser writing. These microstructures with a thin metal coated layer can be used as stretchable conducting meshes. Soft silicone serving as a substrate and encapsulations for these 3D microstructures enables great light transmittance (>90% in visible light range) and flexibility with 114° bending and 24° twisting. Further optimization of the mechanical design of the 3D microstructures can also enhance the stretchability up to 13.8%. These results indicate 3D flexible electronics can be realized by simple microprinting methods. Furthermore, 3D microprinting would also allow for the precise fabrication of other 3D structures, such as mechanically active 3D mesostructures, for the function of mechanical and electrical testing.

17.
Sensors (Basel) ; 19(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653076

RESUMO

Optical resolution photoacoustic microscopy (OR-PAM) provides high-resolution, label-free and non-invasive functional imaging for broad biomedical applications. Dual-polarized fiber laser sensors have high sensitivity, low noise, a miniature size, and excellent stability; thus, they have been used in acoustic detection in OR-PAM. Here, we review recent progress in fiber-laser-based ultrasound sensors for photoacoustic microscopy, especially the dual-polarized fiber laser sensor with high sensitivity. The principle, characterization and sensitivity optimization of this type of sensor are presented. In vivo experiments demonstrate its excellent performance in the detection of photoacoustic (PA) signals in OR-PAM. This review summarizes representative applications of fiber laser sensors in OR-PAM and discusses their further improvements.

18.
Nat Methods ; 12(5): 407-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822799

RESUMO

We present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Microscopia/métodos , Técnicas Fotoacústicas , Animais , Velocidade do Fluxo Sanguíneo , Estimulação Elétrica , Feminino , Camundongos , Reprodutibilidade dos Testes
19.
Opt Express ; 25(15): 17616-17626, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789254

RESUMO

High-frequency fiber laser sensor is a new acoustic detector for photoacoustic imaging. However, its performance has not been thoroughly studied. Here, we present a comprehensive characterization of a fiber laser sensor for photoacoustic imaging. Ultrasound waves deform the fiber laser cavity and induce frequency changes in the heterodyning output signal. The sensitivity peaks at 22 MHz, which is associated with an azimuthal mode number l = 2 and a radial mode number n = 1. The broadband acoustic sensitivity in terms of frequency shift is 2.25 MHz/kPa and the noise-equivalent pressure reaches 45 Pa with a sampling rate of 100 MHz. The 3-dB bandwidth is 18 MHz for spherical-wave detection. We characterized the spatial distribution of acoustic sensitivity. The sensitivity along the fiber longitudinal direction varies with the laser spatial mode and is determined by the grating and cavity parameters. The sensitivity at the azimuthal direction presents a |cos(2θ)| dependence as a result of fiber core asymmetry. In the radial direction, the sensitivity is inversely proportional to the square root of the distance between the source and the detector. The acoustic sensitivity can be enhanced by reducing the cavity length. We experimentally show that a short sensor can enhance the contrast and penetration depth of PAM than a long one.

20.
Opt Lett ; 42(7): 1452-1455, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362790

RESUMO

Fast functional photoacoustic microscopy requires multi-wavelength pulsed laser sources with high pulse repetition rates, short wavelength switching time, and sufficient pulse energies. Here, we report the development of a stimulated-Raman-scattering-based multi-wavelength pulsed laser source for fast functional photoacoustic imaging. The new laser source is pumped with a 532 nm 1 MHz pulsed laser. The 532 nm laser beam is split into two: one pumps a 5 m optical fiber to excite a 558 nm wavelength via stimulated Raman scattering; the other goes through a 50 m optical fiber to delay the 532 nm pulse by 220 ns. The two beams are combined and coupled into an optical fiber for photoacoustic excitation. As a result, the new laser source can generate 2 million pulses per second, switch wavelengths in 220 ns, and provide hundreds of nanojoules pulse energy for each wavelength. Using this laser source, we demonstrate optical-resolution photoacoustic imaging of microvascular structures and oxygen saturation in the mouse ear. The ultrashort wavelength switching time enables oxygen saturation imaging of flowing red blood cells, which is valuable for high-resolution functional imaging.


Assuntos
Lasers , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Animais , Orelha , Hemoglobinas/metabolismo , Camundongos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA