Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 84(11): 5140-5, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22545942

RESUMO

Convenient, rapid, and accurate detection of chemical and biomolecules would be a great benefit to medical, pharmaceutical, and environmental sciences. Many chemical and biosensors based on metal nanoparticles (NPs) have been developed. However, as a result of the inconvenience and complexity of most of the current preparation techniques, surface plasmon-based test papers are not as common as, for example, litmus paper, which finds daily use. In this paper, we propose a convenient and practical technique, based on the photothermal effect, to fabricate the plasmonic test paper. This technique is superior to other reported methods for its rapid fabrication time (a few seconds), large-area throughput, selectivity in the positioning of the NPs, and the capability of preparing NP arrays in high density on various paper substrates. In addition to their low cost, portability, flexibility, and biodegradability, plasmonic test paper can be burned after detecting contagious biomolecules, making them safe and eco-friendly.


Assuntos
Técnicas Biossensoriais , Cisteína/análise , Nanopartículas Metálicas/química , Fitas Reagentes/química , Colorimetria , Ouro/química , Química Verde , Temperatura Alta , Lasers , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Papel , Processos Fotoquímicos , Soluções
2.
Phys Chem Chem Phys ; 13(13): 5747-52, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21321717

RESUMO

In this paper we demonstrate an optical storage medium having advantages of ultrahigh contrast, superior stability, and broadband working wavelengths. Combining a single shot of deep-ultraviolet (UV) laser illumination with a Au particle-assisted etching process, we formed broadband antireflective, one-dimensional silicon nanowire arrays (SiNWs) with selectively at specific positions. Optical measurements and three-dimensional finite-difference time domain (3D-FDTD) simulations revealed ultrahigh reflection contrast between the Au and the SiNWs for both far- and near-field regimes. Relative to typical organic-based storage media, Au films and SiNWs are more stable, both chemically and thermally; therefore, we suspect that this new storage medium would exhibit high stability toward moisture, sunshine, and elevated temperatures.

3.
Biomicrofluidics ; 8(6): 064109, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25553186

RESUMO

A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production.

4.
Nanoscale ; 5(6): 2421-8, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23400221

RESUMO

In this study, we developed a new method-based on laser-induced jets of nanoparticles (NPs) and air drag forces-to select the particle size of NP arrays. First, the incident wavelength of an excimer laser was varied to ensure good photo-to-thermal energy conversion efficiency. We then exploited air drag forces to select NPs with sizes ranging from 5 to 50 nm at different captured distances. Controlling the jet distances allowed us to finely tune the localized surface plasmon resonance (LSPR) wavelength. The shifting range of the LSPR wavelengths of the corresponding NP arrays prepared using the laser-induced jet was wider than that of a single NP or an NP dimer. We further calculated the relationship between the air drag force and the diameter of the NPs to provide good control over the mean NP size (capture size ≧ 300 µm) by varying the capture distance. Laser-induced jets of NPs could also be used to fabricate NP arrays on a variety of substrates, including Si, glass, plastic, and paper. This method has the attractive features of rapid, large-area preparation in an ambient environment, no need for further thermal annealing treatment, ready control over mean particle size, and high selectivity in the positioning of NP arrays. Finally, we used this method to prepare large NP arrays for acting hot spots on surface-enhanced Raman scattering-active substrates, and 10(-12) M R6G can be detected. Besides, we also prepare small NP arrays to act as metal catalysts for constructing low-reflection, broadband light trapping nanostructures on Si substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA