Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710343

RESUMO

MicroRNAs (miRNAs) are a crucial type of non-coding RNAs involved in post-transcriptional regulation. The playing essential regulatory roles in the NF-κB signaling pathway and modulate the host immune response to diverse pathogens by targeting IκBα. However, the regulatory mechanism of miRNAs in relation with IκBα in Sebastes schlegelii remains unclear. In our study, we identified two copies of IkBα gene in black rockfish (Sebastes schlegelii), namely IkBα1 and IkBα2. Moreover, we have discovered that miRNA-530 can activate the NF-κB signaling pathway by inhibiting the expression of IκBα, thereby inducing the inflammatory response. This project comprehensively investigated the interactive regulatory roles of miRNA-530 in the NF-κB signaling pathway at both cellular and in vivo levels, while also elucidating the regulatory relationships between miRNA-530 and IκBα. In conclusion, our research confirmed that miRNA-530 can target the 3'UTR region of IκBα, resulting in a decrease in the expression of IκBα at the post-transcriptional level and inhibiting its translation. The findings contribute to the understanding of the regulatory network of non-coding RNA in teleosts and its subsequent regulation of the NF-κB signaling pathway by miRNAs.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , Inibidor de NF-kappaB alfa , NF-kappa B , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Regulação da Expressão Gênica/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Peixes/genética , Peixes/imunologia , Perciformes/genética , Perciformes/imunologia
2.
J Chem Inf Model ; 64(1): 96-109, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132638

RESUMO

Detecting drug-drug interactions (DDIs) is an essential step in drug development and drug administration. Given the shortcomings of current experimental methods, the machine learning (ML) approach has become a reliable alternative, attracting extensive attention from the academic and industrial fields. With the rapid development of computational science and the growing popularity of cross-disciplinary research, a large number of DDI prediction studies based on ML methods have been published in recent years. To give an insight into the current situation and future direction of DDI prediction research, we systemically review these studies from three aspects: (1) the classic DDI databases, mainly including databases of drugs, side effects, and DDI information; (2) commonly used drug attributes, which focus on chemical, biological, and phenotypic attributes for representing drugs; (3) popular ML approaches, such as shallow learning-based, deep learning-based, recommender system-based, and knowledge graph-based methods for DDI detection. For each section, related studies are described, summarized, and compared, respectively. In the end, we conclude the research status of DDI prediction based on ML methods and point out the existing issues, future challenges, potential opportunities, and subsequent research direction.


Assuntos
Bases de Conhecimento , Aprendizado de Máquina , Interações Medicamentosas , Preparações Farmacêuticas , Bases de Dados Factuais
3.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474174

RESUMO

The gaseous hormone ethylene plays pivotal roles in plant growth and development. The rate-limiting enzyme of ethylene biosynthesis in seed plants is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). ACS proteins are encoded by a multigene family and the expression of ACS genes is highly regulated, especially at a post-translational level. AtACS7, the only type III ACS in Arabidopsis, is degraded in a 26S proteasome-dependent pathway. Here, by using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis, two lysine residues of AtACS7, lys285 (K285) and lys366 (K366), were revealed to be ubiquitin-modified in young, light-grown Arabidopsis seedlings but not in etiolated seedlings. Deubiquitylation-mimicking mutations of these residues significantly increased the stability of the AtACS7K285RK366R mutant protein in cell-free degradation assays. All results suggest that K285 and K366 are the major ubiquitination sites on AtACS7, providing deeper insights into the post-translational regulation of AtACS7 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Liases , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografia Líquida , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinação
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769285

RESUMO

The gaseous hormone ethylene plays a pivotal role in plant growth and development. In seed plants, the key rate-limiting enzyme that controls ethylene biosynthesis is ACC synthase (ACS). ACS has, for a long time, been believed to be a single-activity enzyme until we recently discovered that it also possesses Cß-S lyase (CSL) activity. This discovery raises fundamental questions regarding the biological significance of the dual enzymatic activities of ACS. To address these issues, it is highly necessary to obtain ACS mutants with either ACS or CSL single activity. Here, domain swapping between Arabidopsis AtACS7 and moss CSL PpACL1 were performed. Enzymatic activity assays of the constructed chimeras revealed that, R10, which was produced by replacing AtACS7 box 6 with that of PpACL1, lost ACS but retained CSL activity, whereas R12 generated by box 4 substitution lost CSL and only had ACS activity. The activities of both chimeric proteins were compared with previously obtained single-activity mutants including R6, AtACS7Q98A, and AtACS7D245N. All the results provided new insights into the key residues required for ACS and CSL activities of AtACS7 and laid an important foundation for further in-depth study of the biological functions of its dual enzymatic activities.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Liases , Etilenos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Liases/genética , Liases/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant Cell Environ ; 45(9): 2794-2809, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35815549

RESUMO

Considerable signal crosstalk exists in the regulatory network of senescence and stress response. Numerous senescence-associated genes are also involved in plant stress tolerance. However, the underlying mechanisms and application potential of these genes in stress-tolerant crop breeding remain poorly explored. We found that overexpression of SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), a negative regulator of leaf senescence, significantly improved plant salt tolerance by increasing reactive oxygen species (ROS) scavenging in both Arabidopsis and soybean. However, overexpression of SSPP severely suppressed normal plant growth, limiting its direct use in agriculture. We previously revealed that the N-terminal 1-14 residues of ACS7 (termed 'N7 ') negatively regulated its protein stability through the ubiquitin/proteasome pathway, and the N7 -mediated protein degradation was suppressed by environmental and senescence signals. To avoid the adverse effects of SSPP, the N7 element was fused to the N-terminus of SSPP. We demonstrated that N7 -SSPP fusion gene effectively rescued SSPP-induced growth suppression but maintained enhanced salt tolerance in Arabidopsis and soybean. Particularly, N7 -SSPP enhanced tolerance to long-term salt stress and increased seed yield in soybean. These results suggest that N7 -SSPP overcomes the disadvantages of SSPP on plant growth inhibition and effectively improves salt tolerance through enhanced ROS scavenging, providing an effective strategy of using posttranslational regulatory element for salt-tolerant crop breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Tolerância ao Sal/genética , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico/genética
6.
J Org Chem ; 87(5): 2711-2720, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35018783

RESUMO

An efficient annulation method for the synthesis of polysubstituted dihydrofurans from 1,3-dicarbonyl compounds and maleimides is described. The reactions can afford furo[2,3-c]pyrrole derivatives with satisfactory yields. The developed strategy realizes the direct oxidative double C(sp3)-H functionalization in the presence of copper(I) salts and 2-(tert-butylperoxy)-2-methylpropane. Meanwhile, this protocol features a mild reaction condition and simple catalytic system. A reaction mechanism involving a single electron oxidation is also proposed.

7.
J Appl Toxicol ; 42(3): 529-539, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34550611

RESUMO

The effects of low-dose radiation (LDR, ≤0.1 Gy) on living organisms have been the hot areas of radiation biology but do not reach a definitive conclusion yet. So far, few studies have adequately accounted for the male reproductive system responses to LDR, particularly the regulation of testosterone content. Hence, this study was designed to evaluate the effects of LDR on Leydig cells and testicular tissue, especially the ability to synthesize testosterone. We found that less than 0.2-Gy 60 Co gamma rays did not cause significant changes in the hemogram index and the body weight; also, pathological examination did not find obvious structural alterations in testis, epididymis, and other radiation-sensitive organs. Consistently, the results from in vitro showed that only more than 0.5-Gy gamma rays could induce remarkable DNA damage, cycle arrest, and apoptosis. Notably, LDR disturbed the contents of testosterone in mice serums and culture supernatants of TM3 cells and dose dependently increased the expression of 3ß-HSD. After cotreatment with trilostane (Tril), the inhibitor of 3ß-HSD, increased testosterone could be partially reversed. Besides, DNA damage repair-related enzymes, including DNMT1, DNMT3B, and Sirt1, were increased in irradiated TM3 cells, accompanying by evident demethylation in the gene body of 3ß-HSD. In conclusion, our results strongly suggest that LDR could induce obvious perturbation in the synthesis of testosterone without causing organic damage, during which DNA demethylation modification of 3ß-HSD might play a crucial role and would be a potential target to prevent LDR-induced male reproductive damage.


Assuntos
Desmetilação , Raios gama/efeitos adversos , Células-Tronco Mesenquimais/efeitos da radiação , Complexos Multienzimáticos/metabolismo , Progesterona Redutase/metabolismo , Esteroide Isomerases/metabolismo , Testículo/efeitos da radiação , Testosterona/metabolismo , Animais , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012141

RESUMO

Reversible protein phosphorylation mediated by protein kinases and phosphatases plays important roles in the regulation of leaf senescence. We previously reported that the senescence-associated leucine-rich repeat receptor-like kinase AtSARK autophosphorylates on both serine/threonine and tyrosine residues and functions as a positive regulator of Arabidopsis leaf senescence; the senescence-suppressed protein phosphatase SSPP interacts with and dephosphorylates the cytoplasmic domain of AtSARK, thereby negatively regulating leaf senescence. Here, 27 autophosphorylation residues of AtSARK were revealed by mass spectrometry analysis, and six of them, including two Ser, two Thr, and two Tyr residues, were further found to be important for the biological functions of AtSARK. All site-directed mutations of these six residues that resulted in decreased autophosphorylation level of AtSARK could significantly inhibit AtSARK-induced leaf senescence. In addition, mutations mimicking the dephosphorylation form of Ser384 (S384A) or the phosphorylation form of Tyr413 (Y413E) substantially reduced the interaction between AtSARK and SSPP. All results suggest that autophosphorylation of AtSARK is essential for its functions in promoting leaf senescence. The possible roles of S384 and Y413 residues in fine-tuning the interaction between AtSARK and SSPP are discussed herein.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia , Treonina/metabolismo
9.
Commun Nonlinear Sci Numer Simul ; 109: 106260, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35035179

RESUMO

Migration plays a crucial role in epidemic spreading, and its dynamic can be studied by metapopulation model. Instead of the uniform mixing hypothesis, we adopt networked metapopulation to build the model of the epidemic spreading and the individuals' migration. In these populations, individuals are connected by contact network and populations are coupled by individuals migration. With the network mean-field and the gravity law of migration, we establish the N-seat intertwined SIR model and obtain its basic reproduction number ℛ 0 . Meanwhile, we devise a non-markov Node-Search algorithm for model statistical simulations. Through the static network migration ansatz and ℛ 0 formula, we discover that migration will not directly increase the epidemic replication capacity. But when ℛ 0 > 1 , the migration will make the susceptive population evolve from metastable state (disease-free equilibrium) to stable state (endemic equilibrium), and then increase the influence area of epidemic. Re-evoluting the epidemic outbreak in Wuhan, top 94 cities empirical data validate the above mechanism. In addition, we estimate that the positive anti-epidemic measures taken by the Chinese government may have reduced 4 million cases at least during the first wave of COVID-19, which means those measures, such as the epidemiological investigation, nucleic acid detection in medium-high risk areas and isolation of confirmed cases, also play a significant role in preventing epidemic spreading after travel restriction between cities.

10.
Esophagus ; 19(2): 269-277, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34642835

RESUMO

BACKGROUND: CT is the most commonly used method to stage esophageal cancer (EC). However, the reported CT T-staging criteria for EC are controversial. PURPOSE: To determine and validate the optimal esophageal wall thickness (EWT) threshold on CT to distinguish lesions with different T stages in esophageal squamous cell carcinoma (ESCC) patients. METHODS: One thousand, one hundred-two consecutive patients with histopathologically confirmed ESCC between July 2014 and April 2020 were retrospectively reviewed. All patients underwent a preoperative CT examination and surgical treatment. The maximal EWT of the lesions on CT was measured. Patients were divided into pT1, pT2, pT3 and pT4 subgroups according to the pathologic stage. We employed the support vector machine, where linear kernels were leveraged to determine the optimal threshold to classify samples with different T stages. 90% of samples from each subgroup were randomly selected as the training set, while the remainder comprised the testing set. RESULTS: The mean EWTs of the pT1, pT2, pT3 and pT4 subgroups were 4.9 ± 2.6 mm, 8.1 ± 2.3 mm, 12.4 ± 3.6 mm, and 18.6 ± 4.4 mm, respectively. Differences in the EWT between the four subgroups or between adjacent subgroups were significant (p < 0.001), and esophageal wall became thicker with increasing pT stage. We utilized MATLAB 2020a to implement the SVM model and ran the code 10 times. The accuracy of the model was 60.29 ± 2.33%. The thresholds between samples from pT1/pT2, pT2/pT3 and pT3/pT4 lesions were 5.5 ± 0.3 mm, 10.8 ± 0.8 mm and 15.9 ± 0.5 mm, respectively. CONCLUSIONS: Possibility of predicting T stage of ESCC by EWT on CT scans was limited to 60% by model examination with large sample size.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Estadiamento de Neoplasias , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
11.
Org Biomol Chem ; 19(13): 2895-2900, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33725062

RESUMO

The first nickel-catalyzed oxidative domino Csp3-H/N-H double isocyanide insertion reaction of acetamides with isocyanides has been developed for the synthesis of pyrrolin-2-one derivatives. A wide range of acetamides bearing various functional groups are compatible with this reaction system by utilizing Ni(acac)2 as a catalyst. In this transformation, isocyanide could serve as a C1 connector and insert into the inactive Csp3-H bond, representing an effective way to construct heterocycles.

12.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5522-5532, 2021 Nov.
Artigo em Zh | MEDLINE | ID: mdl-34951203

RESUMO

Seabuckthorn contains flavonoids, tannins, terpenoids, polysaccharides, and vitamins, which have anti-inflammation,anti-oxidation, liver protection, anti-cardiovascular disease, anti-aging, immune enhancing, anti-tumor, and anti-bacterial activities.We reviewed the papers focusing on the chemical constituents, pharmacological activities, and utilization of seabuckthorn. The quality markers(Q-markers) of seabuckthorn were predicted and analyzed based on original plant phylogeny, chemical composition correlation, traditional medicinal properties, pharmacodynamic correlation, traditional and extended efficacy, pharmacokinetics, metabolic processes, and measurable components. With this review, we aim to provide theoretical reference for the quality control and quality standard establishment of seabuckthorn, so as to promote the rational exploitation and utilization of seabuckthorn resources, and improve the healthy and sustainable development of seabuckthorn industry.


Assuntos
Medicamentos de Ervas Chinesas , Hippophae , Anti-Inflamatórios , Biomarcadores , Flavonoides
13.
Plant Cell Physiol ; 61(3): 644-658, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851355

RESUMO

The involvement of SMALL AUXIN-UP RNA (SAUR) proteins in leaf senescence has been more and more acknowledged, but the detailed mechanisms remain unclear. In the present study, we performed yeast two-hybrid assays and identified SAUR49 as an interactor of SENESCENCE SUPPRESSED PROTEIN PHOSPHATASE (SSPP), which is a PP2C protein phosphatase that negatively regulates Arabidopsis leaf senescence by suppressing the leucine-rich repeat receptor-like protein kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), as reported previously by our group. The interaction between SAUR49 and SSPP was further confirmed in planta. Functional characterization revealed that SAUR49 is a positive regulator of leaf senescence. The accumulation level of SAUR49 protein increased during natural leaf senescence in Arabidopsis. The transcript level of SAUR49 was upregulated during SARK-induced premature leaf senescence but downregulated during SSPP-mediated delayed leaf senescence. Overexpression of SAUR49 significantly accelerated both natural and dark-induced leaf senescence in Arabidopsis. More importantly, SAUR49 overexpression completely reversed SSPP-induced delayed leaf senescence. In addition, overexpression of SAUR49 reversed the decreased plasma membrane H+-ATPase activity mediated by SSPP. Taken together, the results showed that SAUR49 functions in accelerating the leaf senescence process via the activation of SARK-mediated leaf senescence signaling by suppressing SSPP. We further identified four other SSPP-interacting SAURs, SAUR30, SAUR39, SAUR41 and SAUR72, that may act redundantly with SAUR49 in regulating leaf senescence. All these observations indicated that certain members of the SAUR family may serve as an important hub that integrates various hormonal and environmental signals with senescence signals in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
14.
Plant Biotechnol J ; 18(8): 1749-1762, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31945255

RESUMO

Amino acid transport via phloem is one of the major source-to-sink nitrogen translocation pathways in most plant species. Amino acid permeases (AAPs) play essential roles in amino acid transport between plant cells and subsequent phloem or seed loading. In this study, a soybean AAP gene, annotated as GmAAP6a, was cloned and demonstrated to be significantly induced by nitrogen starvation. Histochemical staining of GmAAP6a:GmAAP6a-GUS transgenic soybean revealed that GmAAP6a is predominantly expressed in phloem and xylem parenchyma cells. Growth and transport studies using toxic amino acid analogs or single amino acids as a sole nitrogen source suggest that GmAAP6a can selectively absorb and transport neutral and acidic amino acids. Overexpression of GmAAP6a in Arabidopsis and soybean resulted in elevated tolerance to nitrogen limitation. Furthermore, the source-to-sink transfer of amino acids in the transgenic soybean was markedly improved under low nitrogen conditions. At the vegetative stage, GmAAP6a-overexpressing soybean showed significantly increased nitrogen export from source cotyledons and simultaneously enhanced nitrogen import into sink primary leaves. At the reproductive stage, nitrogen import into seeds was greatly enhanced under both sufficient and limited nitrogen conditions. Collectively, our results imply that overexpression of GmAAP6a enhances nitrogen stress tolerance and source-to-sink transport and improves seed quality in soybean. Co-expression of GmAAP6a with genes specialized in source nitrogen recycling and seed loading may represent an interesting application potential in breeding.


Assuntos
Fabaceae , Nitrogênio , Aminoácidos , Sementes/genética , Glycine max/genética
16.
Int J Mol Sci ; 20(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027230

RESUMO

Leaf senescence is a highly-programmed developmental process regulated by an array of multiple signaling pathways. Our group previously reported that overexpression of the protein phosphatase-encoding gene SSPP led to delayed leaf senescence and significantly enhanced cytokinin responses. However, it is still unclear how the delayed leaf senescence phenotype is associated with the enhanced cytokinin responses. In this study, we introduced a cytokinin receptor AHK3 knockout into the 35S:SSPP background. The phenotypic analysis of double mutant revealed that AHK3 loss-of-function reversed the delayed leaf senescence induced by SSPP. Moreover, we found the hypersensitivity of 35S:SSPP to exogenous cytokinin treatment disappeared due to the introduction of AHK3 knockout. Collectively, our results demonstrated that AHK3-mediated cytokinin signaling is required for the delayed leaf senescence caused by SSPP overexpression and the detailed mechanism remains to be further elucidated.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Histidina Quinase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosfoproteínas Fosfatases/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 44(8): 1642-1647, 2019 Apr.
Artigo em Zh | MEDLINE | ID: mdl-31090329

RESUMO

This paper was aimed to investigate the inhibitory effect of aconitine(AC) on angiotensin Ⅱ(Ang Ⅱ)-induced H9 c2 cell hypertrophy and explore its mechanism of action. The model of hypertrophy was induced by Ang Ⅱ(1×10-6 mol·L-1),and cardiomyocytes were incubated with different concentrations of AC. Western blot was used to quantify the protein expression levels of atrial natriuretic peptide(ANP),brain natriuretic peptide(BNP),ß-myosin heavy chain(ß-MHC),and α-smooth muscle actin(α-SMA). Real-time quantitative PCR(qRT-PCR) was used to quantify the mRNA expression levels of cardiac hypertrophic markers ANP,BNP and ß-MHC. In addition,the fluorescence intensity of the F-actin marker,an important component of myofibrils,was detected by using laser confocal microscope. AC could significantly reverse the increase of total protein content in H9 c2 cells induced by Ang Ⅱ; qRT-PCR results showed that AC could significantly inhibit the ANP,BNP and ß-MHC mRNA up-regulation induced by AngⅡ. Western blot results showed that AC could significantly inhibit the ANP,BNP and ß-MHC protein up-regulation induced by AngⅡ. In addition,F-actin expression induced by Ang Ⅱ could be inhibited by AC,and multiple indicators of cardiomyocyte hypertrophy induced by Ang Ⅱ could be down-regulated,indicating that AC may inhibit cardiac hypertrophy by inhibiting the expression of hypertrophic factors,providing new clues for exploring the cardiovascular protection of AC.


Assuntos
Aconitina/farmacologia , Angiotensina II , Miócitos Cardíacos/efeitos dos fármacos , Actinas/metabolismo , Fator Natriurético Atrial/metabolismo , Miosinas Cardíacas/metabolismo , Cardiomegalia , Células Cultivadas , Humanos , Hipertrofia , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1876-1881, 2019 May.
Artigo em Zh | MEDLINE | ID: mdl-31342716

RESUMO

This study is aimed to investigate the intervention effect and possible mechanism of ophiopogonin D( OPD) in protecting cardiomyocytes against ophiopogonin D'( OPD')-induced injury,and provide reference for further research on toxicity difference of saponins from ophiopogonins. CCK-8 assay was used to evaluate the effect of OPD and OPD' on cell viability. The effect of OPD on OPD'-induced cell apoptosis was measured by flow cytometry. Morphologies of endoplasmic reticulum were observed by endoplasmic reticulum fluorescent probe. PERK,ATF-4,Bip and CHOP mRNA levels were detected by Real-time quantitative polymerase chain reaction( PCR) analysis. ATF-4,phosphorylated PERK and e IF2α protein levels were detected by Western blot assay. RESULTS:: showed that treatment with OPD'( 6 µmol·L-1) significantly increased the rate of apoptosis; expressions of endoplasmic reticulum stress related genes were increased. The morphology of the endoplasmic reticulum was changed. In addition,different concentrations of OPD could partially reverse the myocardial cell injury caused by OPD'. The experimental results showed that OPD'-induced myocardial toxicity may be associated with the endoplasmic reticulum stress,and OPD may modulate the expression of CYP2 J3 to relieve the endoplasmic reticulum stress caused by OPD'.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Saponinas/farmacologia , Espirostanos/farmacologia , Apoptose , Cardiotônicos/farmacologia , Células Cultivadas , Humanos
19.
Zhongguo Zhong Yao Za Zhi ; 43(22): 4370-4379, 2018 Nov.
Artigo em Zh | MEDLINE | ID: mdl-30593227

RESUMO

Macrophages are a group of immune cells with pluripotency and plasticity that can differentiate into different phenotypes under different microenvironments in vitro and in vivo. In the development of pulmonary fibrosis, there are alveolar macrophages and interstitial macrophages, which are polarized to different cell phenotypes at different stages of development. And their polarized phenotypes include M1 macrophages and M2 macrophages. In the inflammation early stages of pulmonary fibrosis, the increase of classical activated macrophages are helpful to clear pathogenic microorganisms and promote the progress of inflammation. In the fibrosis stage, the alternatively activated macrophages increased, which inhibiting the inflammatory reaction or directly promoting tissue fibrosis, on the other hand, it also promoting the fibrosis degradation. To clarify the polarization and polarization mechanisms of macrophages in pulmonary fibrosis will be conducive to the treatment of pulmonary fibrosis. In IPF, the polarization mechanism of M1 and M2 is closely related to TGF-ß1/Smad. TGF-ß1/Smad pathway plays an important regulatory role in liver fibrosis, renal fibrosis, myocardial fibrosis, scars, tumors and other diseases. Blocking the signaling of TGF-ß1 by Smad3 and Smad4 is beneficial to inhibit the polarization of AM, which in turn helps to inhibit the progression of IPF.


Assuntos
Macrófagos , Fibrose Pulmonar , Fibrose , Humanos , Inflamação , Transdução de Sinais
20.
Zhongguo Zhong Yao Za Zhi ; 43(9): 1952-1956, 2018 May.
Artigo em Zh | MEDLINE | ID: mdl-29902910

RESUMO

To study the evolution of Chinese ancient and modern pharmacopoeia standards and compare the domestic and foreign pharmacopoeias, further understand the international requirements on chrysanthemum quality, and establish a more suitable and modern standard system for high quality Chrysanthemi Flos pieces. Newly Revised Materia Medica, Welfare Pharmacy, Collected Essentials of Species of Materia Medica (Bencao Pinhui Jingyao), Chinese Pharmacopoeia and other herbal remedies in various generations were reviewed to summarize the evolution of domestic standards on Chrysanthemi Flos pieces. Then they were compared with those in European Pharmacopoeia, United States Pharmacopoeia, Japanese Pharmacopoeia and other foreign Pharmacopoeias to establish a modern and international high-quality Chrysanthemi Flos pieces standard system with Chinese medicine characteristics and produce more internationally recognized high-quality Chinese medicine pieces.


Assuntos
Chrysanthemum , Medicamentos de Ervas Chinesas , Flores , Materia Medica , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA