Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863244

RESUMO

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Invasividade Neoplásica/genética , Proteína Wnt-5a/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo
2.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34081102

RESUMO

Novel coronavirus disease 2019 (COVID-19) is an emerging, rapidly evolving crisis, and the ability to predict prognosis for individual COVID-19 patient is important for guiding treatment. Laboratory examinations were repeatedly measured during hospitalization for COVID-19 patients, which provide the possibility for the individualized early prediction of prognosis. However, previous studies mainly focused on risk prediction based on laboratory measurements at one time point, ignoring disease progression and changes of biomarkers over time. By using historical regression trees (HTREEs), a novel machine learning method, and joint modeling technique, we modeled the longitudinal trajectories of laboratory biomarkers and made dynamically predictions on individual prognosis for 1997 COVID-19 patients. In the discovery phase, based on 358 COVID-19 patients admitted between 10 January and 18 February 2020 from Tongji Hospital, HTREE model identified a set of important variables including 14 prognostic biomarkers. With the trajectories of those biomarkers through 5-day, 10-day and 15-day, the joint model had a good performance in discriminating the survived and deceased COVID-19 patients (mean AUCs of 88.81, 84.81 and 85.62% for the discovery set). The predictive model was successfully validated in two independent datasets (mean AUCs of 87.61, 87.55 and 87.03% for validation the first dataset including 112 patients, 94.97, 95.78 and 94.63% for the second validation dataset including 1527 patients, respectively). In conclusion, our study identified important biomarkers associated with the prognosis of COVID-19 patients, characterized the time-to-event process and obtained dynamic predictions at the individual level.


Assuntos
Biomarcadores , COVID-19/epidemiologia , Prognóstico , SARS-CoV-2/patogenicidade , COVID-19/diagnóstico , COVID-19/virologia , Progressão da Doença , Feminino , Hospitalização , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Medição de Risco , Índice de Gravidade de Doença
3.
J Pathol ; 258(2): 121-135, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723032

RESUMO

Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação , Macrófagos Associados a Tumor
4.
BMC Infect Dis ; 21(1): 647, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225644

RESUMO

BACKGROUND: Males and females differ in their immunological responses to foreign pathogens. However, most of the current COVID-19 clinical practices and trials do not take the sex factor into consideration. METHODS: We performed a sex-based comparative analysis for the clinical outcomes, peripheral immune cells, and severe acute respiratory syndrome coronavirus (SARS-CoV-2) specific antibody levels of 1558 males and 1499 females COVID-19 patients from a single center. The lymphocyte subgroups were measured by Flow cytometry. The total antibody, Spike protein (S)-, receptor binding domain (RBD)-, and nucleoprotein (N)- specific IgM and IgG levels were measured by chemiluminescence. RESULTS: We found that male patients had approximately two-fold rates of ICU admission (4.7% vs. 2.7% in males and females, respectively, P = 0.005) and mortality (3% vs. 1.4%, in males and females, respectively, P = 0.004) than female patients. Survival analysis revealed that the male sex is an independent risk factor for death from COVID-19 (adjusted hazard ratio [HR] = 2.22, 95% confidence interval [CI]: 1.3-3.6, P = 0.003). The level of inflammatory cytokines in peripheral blood was higher in males during hospitalization. The renal (102/1588 [6.5%] vs. 63/1499 [4.2%], in males and females, respectively, P = 0.002) and hepatic abnormality (650/1588 [40.9%] vs. 475/1499 [31.7%], P = 0.003) were more common in male patients than in female patients. By analyzing dynamic changes of lymphocyte subsets after symptom onset, we found that the percentage of CD19+ B cells and CD4+ T cells was generally higher in female patients during the disease course of COVID-19. Notably, the protective RBD-specific IgG against SARS-CoV-2 sharply increased and reached a peak in the fourth week after symptom onset in female patients, while gradually increased and reached a peak in the seventh week after symptom onset in male patients. CONCLUSIONS: Males had an unfavorable prognosis, higher inflammation, a lower percentage of lymphocytes, and indolent antibody responses during SARS-CoV-2 infection and recovery. Early medical intervention and close monitoring are important, especially for male COVID-19 patients.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Formação de Anticorpos , Feminino , Humanos , Imunoglobulina G/sangue , Subpopulações de Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais
5.
Crit Care ; 25(1): 158, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902676

RESUMO

BACKGROUND: COVID-19 has resulted in high mortality worldwide. Information regarding cardiac markers for precise risk-stratification is limited. We aim to discover sensitive and reliable early-warning biomarkers for optimizing management and improving the prognosis of COVID-19 patients. METHODS: A total of 2954 consecutive COVID-19 patients who were receiving treatment from the Wuhan Huoshenshan Hospital in China from February 4 to April 10 were included in this retrospective cohort. Serum levels of cardiac markers were collected after admission. Coronary artery disease diagnosis and survival status were recorded. Single-cell RNA-sequencing and bulk RNA-sequencing from different cohorts of non-COVID-19 were performed to analyze SARS-CoV-2 receptor expression. RESULTS: Among 2954 COVID-19 patients in the analysis, the median age was 60 years (50-68 years), 1461 (49.5%) were female, and 1515 (51.3%) were severe/critical. Compared to mild/moderate (1439, 48.7%) patients, severe/critical patients showed significantly higher levels of cardiac markers within the first week after admission. In severe/critical COVID-19 patients, those with abnormal serum levels of BNP (42 [24.6%] vs 7 [1.1%]), hs-TNI (38 [48.1%] vs 6 [1.0%]), α- HBDH (55 [10.4%] vs 2 [0.2%]), CK-MB (45 [36.3%] vs 12 [0.9%]), and LDH (56 [12.5%] vs 1 [0.1%]) had a significantly higher mortality rate compared to patients with normal levels. The same trend was observed in the ICU admission rate. Severe/critical COVID-19 patients with pre-existing coronary artery disease (165/1,155 [10.9%]) had more cases of BNP (52 [46.5%] vs 119 [16.5%]), hs-TNI (24 [26.7%] vs 9.6 [%], α- HBDH (86 [55.5%] vs 443 [34.4%]), CK-MB (27 [17.4%] vs 97 [7.5%]), and LDH (65 [41.9%] vs 382 [29.7%]), when compared with those without coronary artery disease. There was enhanced SARS-CoV-2 receptor expression in coronary artery disease compared with healthy controls. From regression analysis, patients with five elevated cardiac markers were at a higher risk of death (hazards ratio 3.4 [95% CI 2.4-4.8]). CONCLUSIONS: COVID-19 patients with pre-existing coronary artery disease represented a higher abnormal percentage of cardiac markers, accompanied by high mortality and ICU admission rate. BNP together with hs-TNI, α- HBDH, CK-MB and LDH act as a prognostic biomarker in COVID-19 patients with or without pre-existing coronary artery disease.


Assuntos
Biomarcadores/sangue , COVID-19/sangue , COVID-19/terapia , Doença da Artéria Coronariana/sangue , Idoso , COVID-19/epidemiologia , China/epidemiologia , Doença da Artéria Coronariana/epidemiologia , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Medição de Risco/métodos
6.
Genomics ; 112(2): 1926-1940, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759122

RESUMO

To understand the androgen receptor (AR) in different human malignancies, we conducted a pan-cancer analysis of AR in different tumor tissues and association with patient survival and obtained AR expression data from The Cancer Genome Atlas. Pan-Cancer Analysis of AR indicated that 12 tumor types had decreased AR expression in the tumor, while glioblastoma multiforme has overexpressed AR. The survival analysis showed that high AR mRNA is associated with poor survival of stomach adenocarcinoma and low-grade glioma, but better survival of adrenocortical carcinoma, kidney renal clear cell carcinoma, acute myeloid leukemia, liver hepatocellular carcinoma, ovarian serous cystadenocarcinoma, and skin cutaneous melanoma based on AR mRNA, protein or AR-score. AR was associated with different clinical characteristics and AR correlated genes enriched in cancer-related pathways. These data indicate that AR signaling may be strongly associated with some cancer development and patients' survival, which is promising for potential treatment using antiandrogen therapies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Receptores Androgênicos/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/classificação , Neoplasias/patologia , Receptores Androgênicos/metabolismo , Análise de Sobrevida
7.
Nucleic Acids Res ; 46(D1): D1144-D1149, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29099951

RESUMO

Gene fusion represents a class of molecular aberrations in cancer and has been exploited for therapeutic purposes. In this paper we describe TumorFusions, a data portal that catalogues 20 731 gene fusions detected in 9966 well characterized cancer samples and 648 normal specimens from The Cancer Genome Atlas (TCGA). The portal spans 33 cancer types in TCGA. Fusion transcripts were identified via a uniform pipeline, including filtering against a list of 3838 transcript fusions detected in a panel of 648 non-neoplastic samples. Fusions were mapped to somatic DNA rearrangements identified using whole genome sequencing data from 561 cancer samples as a means of validation. We observed that 65% of transcript fusions were associated with a chromosomal alteration, which is annotated in the portal. Other features of the portal include links to SNP array-based copy number levels and mutational patterns, exon and transcript level expressions of the partner genes, and a network-based centrality score for prioritizing functional fusions. Our portal aims to be a broadly applicable and user friendly resource for cancer gene annotation and is publicly available at http://www.tumorfusions.org.


Assuntos
Bases de Dados Genéticas , Fusão Gênica , Neoplasias/genética , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Interface Usuário-Computador , Sequenciamento Completo do Genoma
8.
Proc Natl Acad Sci U S A ; 114(43): E9086-E9095, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073105

RESUMO

An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor (PAF) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM).


Assuntos
Neoplasias Encefálicas/radioterapia , Proteínas de Transporte/genética , Glioblastoma/radioterapia , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Pirimidinas/biossíntese , Tolerância a Radiação , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Transl Med ; 14: 46, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861698

RESUMO

BACKGROUND: The majority of glioblastomas have aberrant receptor tyrosine kinase (RTK)/RAS/phosphoinositide 3 kinase (PI3K) signaling pathways and malignant glioma cells are thought to be addicted to these signaling pathways for their survival and proliferation. However, recent studies suggest that monotherapies or inappropriate combination therapies using the molecular targeted drugs have limited efficacy possibly because of tumor heterogeneities, signaling redundancy and crosstalk in intracellular signaling network, indicating necessity of rationale and methods for efficient personalized combination treatments. Here, we evaluated the growth of colonies obtained from glioma tumor-initiating cells (GICs) derived from glioma sphere culture (GSC) in agarose and examined the effects of combination treatments on GICs using targeted drugs that affect the signaling pathways to which most glioma cells are addicted. METHODS: Human GICs were cultured in agarose and treated with inhibitors of RTKs, non-receptor kinases or transcription factors. The colony number and volume were analyzed using a colony counter, and Chou-Talalay combination indices were evaluated. Autophagy and apoptosis were also analyzed. Phosphorylation of proteins was evaluated by reverse phase protein array and immunoblotting. RESULTS: Increases of colony number and volume in agarose correlated with the Gompertz function. GICs showed diverse drug sensitivity, but inhibitions of RTK and RAF/MEK or PI3K by combinations such as EGFR inhibitor and MEK inhibitor, sorafenib and U0126, erlotinib and BKM120, and EGFR inhibitor and sorafenib showed synergy in different subtypes of GICs. Combination of erlotinib and sorafenib, synergistic in GSC11, induced apoptosis and autophagic cell death associated with suppressed Akt and ERK signaling pathways and decreased nuclear PKM2 and ß-catenin in vitro, and tended to improve survival of nude mice bearing GSC11 brain tumor. Reverse phase protein array analysis of the synergistic treatment indicated involvement of not only MEK and PI3K signaling pathways but also others associated with glucose metabolism, fatty acid metabolism, gene transcription, histone methylation, iron transport, stress response, cell cycle, and apoptosis. CONCLUSION: Inhibiting RTK and RAF/MEK or PI3K could induce synergistic cytotoxicity but personalization is necessary. Examining colonies in agarose initiated by GICs from each patient may be useful for drug sensitivity testing in personalized cancer therapy.


Assuntos
Glioma/tratamento farmacológico , Glioma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Células-Tronco Neoplásicas/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Quinases raf/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Masculino , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases raf/metabolismo
12.
Stem Cells ; 33(8): 2400-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25966666

RESUMO

Although mesenchymal stem cells (MSCs) have been implicated as stromal components of several cancers, their ultimate contribution to tumorigenesis and their potential to drive cancer stem cells, particularly in the unique microenvironment of human brain tumors, remain largely undefined. Consequently, using established criteria, we isolated glioma-associated-human MSCs (GA-hMSCs) from fresh human glioma surgical specimens for the first time. We show that these GA-hMSCs are nontumorigenic stromal cells that are phenotypically similar to prototypical bone marrow-MSCs. Low-passage genomic sequencing analyses comparing GA-hMSCs with matched tumor-initiating glioma stem cells (GSCs) suggest that most GA-hMSCs (60%) are normal cells recruited to the tumor (group 1 GA-hMSCs), although, rarely (10%), GA-hMSCs may differentiate directly from GSCs (group 2 GA-hMSCs) or display genetic patterns intermediate between these groups (group 3 GA-hMSCs). Importantly, GA-hMSCs increase proliferation and self-renewal of GSCs in vitro and enhance GSC tumorigenicity and mesenchymal features in vivo, confirming their functional significance within the GSC niche. These effects are mediated by GA-hMSC-secreted interleukin-6, which activates STAT3 in GSCs. Our results establish GA-hMSCs as a potentially new stromal component of gliomas that drives the aggressiveness of GSCs, and point to GA-hMSCs as a novel therapeutic target within gliomas.


Assuntos
Proliferação de Células , Receptor gp130 de Citocina/metabolismo , Glioma/metabolismo , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Feminino , Glioma/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia
13.
J Proteome Res ; 14(2): 778-86, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25399873

RESUMO

Novel proteoforms with single amino acid variations represent proteins that often have altered biological functions but are less explored in the human proteome. We have developed an approach, searching high quality shotgun proteomic data against an extended protein database, to identify expressed mutant proteoforms in glioma stem cell (GSC) lines. The systematic search of MS/MS spectra using PEAKS 7.0 as the search engine has recognized 17 chromosome 19 proteins in GSCs with altered amino acid sequences. The results were further verified by manual spectral examination, validating 19 proteoforms. One of the novel findings, a mutant form of branched-chain aminotransferase 2 (p.Thr186Arg), was verified at the transcript level and by targeted proteomics in several glioma stem cell lines. The structure of this proteoform was examined by molecular modeling in order to estimate conformational changes due to mutation that might lead to functional modifications potentially linked to glioma. Based on our initial findings, we believe that our approach presented could contribute to construct a more complete map of the human functional proteome.


Assuntos
Aminoácidos/química , Neoplasias Encefálicas/química , Cromossomos Humanos Par 19 , Glioma/química , Proteínas de Neoplasias/química , Células-Tronco Neoplásicas/química , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Transcriptoma
14.
Bioinformatics ; 30(15): 2224-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24695405

RESUMO

SUMMARY: Technological advances in high-throughput sequencing necessitate improved computational tools for processing and analyzing large-scale datasets in a systematic automated manner. For that purpose, we have developed PRADA (Pipeline for RNA-Sequencing Data Analysis), a flexible, modular and highly scalable software platform that provides many different types of information available by multifaceted analysis starting from raw paired-end RNA-seq data: gene expression levels, quality metrics, detection of unsupervised and supervised fusion transcripts, detection of intragenic fusion variants, homology scores and fusion frame classification. PRADA uses a dual-mapping strategy that increases sensitivity and refines the analytical endpoints. PRADA has been used extensively and successfully in the glioblastoma and renal clear cell projects of The Cancer Genome Atlas program. AVAILABILITY AND IMPLEMENTATION: http://sourceforge.net/projects/prada/ CONTACT: gadgetz@broadinstitute.org or rverhaak@mdanderson.org SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Sequência de RNA/métodos , Software , Estatística como Assunto/métodos , Sequência de Bases , Fusão Gênica , Genoma Humano/genética , Humanos , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Proteome Res ; 13(1): 191-9, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24266786

RESUMO

One subproject within the global Chromosome 19 Consortium is to define chromosome 19 gene and protein expression in glioma-derived cancer stem cells (GSCs). Chromosome 19 is notoriously linked to glioma by 1p/19q codeletions, and clinical tests are established to detect that specific aberration. GSCs are tumor-initiating cells and are hypothesized to provide a repository of cells in tumors that can self-replicate and be refractory to radiation and chemotherapeutic agents developed for the treatment of tumors. In this pilot study, we performed RNA-Seq, label-free quantitative protein measurements in six GSC lines, and targeted transcriptomic analysis using a chromosome 19-specific microarray in an additional six GSC lines. The data have been deposited to the ProteomeXchange with identifier PXD000563. Here we present insights into differences in GSC gene and protein expression, including the identification of proteins listed as having no or low evidence at the protein level in the Human Protein Atlas, as correlated to chromosome 19 and GSC subtype. Furthermore, the upregulation of proteins downstream of adenovirus-associated viral integration site 1 (AAVS1) in GSC11 in response to oncolytic adenovirus treatment was demonstrated. Taken together, our results may indicate new roles for chromosome 19, beyond the 1p/19q codeletion, in the future of personalized medicine for glioma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Cromossomos Humanos Par 19 , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteoma , Transcriptoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/patologia
16.
Int J Biol Macromol ; 276(Pt 2): 133987, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032875

RESUMO

This paper aims to investigate the current situation of cancer related fibroblasts promoting malignant development of cancer through FOXO1 protein/LIF signal, and explore the strategy of cancer treatment. Recent studies have shown that the expression of the protein forkhead box O1 (FOXO1) is increased in CAFsCAFs (Cancer-associated fibroblasts). This led researchers to investigate whether FOXO1 is involved in the role of CAFs in lung cancer. The results of the study revealed that FOXO1 is indeed upregulated in CAFs, and it positively regulates the transcription of another protein called LIF. Notably, LIF is also upregulated in both CAFs and lung cancer cells. These changes in protein expression were associated with the overexpression of FOXO1 in CAFs. Conversely, silencing FOXO1 in CAFs suppressed their effects on cancer cells and transplanted tumors. The study revealed that the downregulation of LIFR in cancer cells abolished the impact of CAFs overexpressing FOXO1 on cancer cell behavior. This suggests that the FOXO1/LIF signaling pathway is involved in mediating the malignant development of lung cancer induced by CAFs.

17.
J Biomed Res ; 38(4): 397-412, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807380

RESUMO

Given the extremely high inter-patient heterogeneity of acute myeloid leukemia (AML), the identification of biomarkers for prognostic assessment and therapeutic guidance is critical. Cell surface markers (CSMs) have been shown to play an important role in AML leukemogenesis and progression. In the current study, we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas (TCGA) based on differential gene expression analysis and univariable Cox proportional hazards regression analysis. By using multi-model analysis, including Adaptive LASSO regression, LASSO regression, and Elastic Net, we constructed a 9-CSMs prognostic model for risk stratification of the AML patients. The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels. Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients. The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores. Notably, single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance. Furthermore, PI3K inhibitors were identified as potential treatments for these high-risk patients. In conclusion, we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.

18.
Nat Commun ; 15(1): 6740, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112531

RESUMO

Glioblastoma (GBM) is the most common brain tumor and remains incurable. Primary GBM cultures are widely used tools for drug screening, but there is a lack of genomic and pharmacological characterization for these primary GBM cultures. Here, we collect 50 patient-derived glioma cell (PDGC) lines and characterize them by whole genome sequencing, RNA sequencing, and drug response screening. We identify three molecular subtypes among PDGCs: mesenchymal (MES), proneural (PN), and oxidative phosphorylation (OXPHOS). Drug response profiling reveals that PN subtype PDGCs are sensitive to tyrosine kinase inhibitors, whereas OXPHOS subtype PDGCs are sensitive to histone deacetylase inhibitors, oxidative phosphorylation inhibitors, and HMG-CoA reductase inhibitors. PN and OXPHOS subtype PDGCs stably form tumors in vivo upon intracranial transplantation into immunodeficient mice, whereas most MES subtype PDGCs fail to form tumors in vivo. In addition, PDGCs cultured by serum-free medium, especially long-passage PDGCs, carry MYC/MYCN amplification, which is rare in GBM patients. Our study provides a valuable resource for understanding primary glioma cell cultures and clinical translation and highlights the problems of serum-free PDGC culture systems that cannot be ignored.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Camundongos , Glioma/genética , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Feminino , Masculino , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto , Genômica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Multiômica
19.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507470

RESUMO

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Enxofre/metabolismo , Enxofre/uso terapêutico , Fumaratos , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/metabolismo
20.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594444

RESUMO

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Assuntos
Glioblastoma , NF-kappa B , Células-Tronco Neoplásicas , Transdução de Sinais , Macrófagos Associados a Tumor , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , NF-kappa B/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA