Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 209(6): 1095-1107, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985789

RESUMO

Mammalian studies have demonstrated that B cell immune responses are regulated by mechanistic target of rapamycin complex 1 (mTORC1) signaling. Teleost fish represent the oldest living bony vertebrates that contain bona fide B cells. So far, whether the regulatory mechanism of mTORC1 signaling in B cells occurred in teleost fish is still unknown. In this study, we developed a fish model by using rapamycin (RAPA) treatment to inhibit mTORC1 signaling and demonstrated the role of mTORC1 signaling in teleost B cells. In support, we found inhibition of mTORC1 signaling by RAPA decreased the phagocytic capacity, proliferation, and Ig production of B cells. Critically, Flavobacterium columnare induced specific IgM binding in serum, and these titers were significantly inhibited by RAPA treatment, thus decreasing Ab-mediated agglutination of F. columnare and significantly increasing the susceptibility of fish upon F. columnare reinfection. Collectively, our findings elucidated that the mTORC1 pathway is evolutionarily conserved in regulating B cell responses, thus providing a new point for understanding the B cells functions in teleost fish.


Assuntos
Linfócitos B , Transdução de Sinais , Animais , Peixes , Imunoglobulina M , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo/farmacologia
2.
Front Immunol ; 11: 583740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304348

RESUMO

The olfactory organs (OOs) of vertebrates play important roles in their extraordinary chemosensory capacity, a process during which they are continuously exposed to environmental pathogens. Nasopharynx-associated lymphoid tissue (NALT) contains B cells and immunoglobulins (Igs), which function as the first defense line against antigens in mammals and also exist in teleosts. However, the immune responses of teleost NALT B cells and Igs during bacterial infection remain largely uncharacterized. In this study, rainbow trout were infected with Flavobacterium columnare via continuous immersion, after which the adaptive immune responses within NALT were evaluated. F. columnare could invade trout nasal mucosa and cause histopathological changes in trout OO. Moreover, the accumulation of IgT+ B cells in trout nasal mucosa was induced by bacterial challenge, which was accompanied by strong bacteria-specific IgT responses in the nasal mucus. Importantly, our study is the first to report local nasal-specific immune responses in teleosts during bacterial challenge by characterizing the local proliferation of IgT+ B cells and generation of bacteria-specific IgT in trout OOs after F. columnare infection. In addition to the strong IgT and IgT+ B cells responses in OO, bacteria-specific IgT and IgM were also detected in serum following bacterial challenge. Taken together, our findings suggest that IgT functions as an important mucosal Ig in teleost NALT and mediates local adaptive immunity during bacterial infection, which is similar to their protective role during parasitic infection.


Assuntos
Imunidade Adaptativa/imunologia , Antibacterianos/imunologia , Encéfalo/imunologia , Imunidade nas Mucosas/imunologia , Imunoglobulinas/imunologia , Oncorhynchus mykiss/imunologia , Animais , Linfócitos B/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Flavobacterium/imunologia , Linfócitos/imunologia , Mucosa Nasal/imunologia , Oncorhynchus mykiss/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA