Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 630(8017): 631-635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811739

RESUMO

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

3.
Nat Nanotechnol ; 19(5): 632-637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38216685

RESUMO

Environmentally friendly tin (Sn) perovskites have received considerable attention due to their great potential for replacing their toxic lead counterparts in applications of photovoltaics and light-emitting diodes (LEDs). However, the device performance of Sn perovskites lags far behind that of lead perovskites, and the highest reported external quantum efficiencies of near-infrared Sn perovskite LEDs are below 10%. The poor performance stems mainly from the numerous defects within Sn perovskite crystallites and grain boundaries, leading to serious non-radiative recombination. Various epitaxy methods have been introduced to obtain high-quality perovskites, although their sophisticated processes limit the scalable fabrication of functional devices. Here we demonstrate that epitaxial heterodimensional Sn perovskite films can be fabricated using a spin-coating process, and efficient LEDs with an external quantum efficiency of 11.6% can be achieved based on these films. The film is composed of a two-dimensional perovskite layer and a three-dimensional perovskite layer, which is highly ordered and has a well-defined interface with minimal interfacial areas between the different dimensional perovskites. This unique nanostructure is formed through direct spin coating of the perovskite precursor solution with tryptophan and SnF2 additives onto indium tin oxide glass. We believe that our approach will provide new opportunities for further developing high-performance optoelectronic devices based on heterodimensional perovskites.

4.
Research (Wash D C) ; 6: 0112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223460

RESUMO

Metal halide perovskites have advanced greatly in both light-emitting diodes (LEDs) and photovoltaics (PVs) through delicate device engineering. The optimization strategies of perovskite LEDs and PVs have been demonstrated to be quite different. Here, we show that this dissimilarity in device fabrications can be well understood based on the analysis of carrier dynamics in LEDs and PVs.

5.
J Phys Chem Lett ; 14(16): 3805-3810, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37053436

RESUMO

In this work, we provide a picture of the band structure of FAPbI3 by investigating low-temperature spin-related photophysics. When the temperature is lower than 120 K, two photoluminescence peaks can be observed. The lifetime of the newly emerged low-energy emission is much longer than that of the original high-energy one by two orders of magnitude. We propose that Rashba effect-caused spin-dependent band splitting is the reason for the emergence of the low-energy emission and verify this using the magneto-optical measurements.

6.
Adv Mater ; 35(44): e2303144, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37732391

RESUMO

Realization of electrically pumped laser diodes based on solution-processed semiconductors is a long-standing challenge. Metal halide perovskites have shown great potential toward this goal due to their excellent optoelectronic properties. Continuous-wave (CW) optically pumped lasing in a real electroluminescent device represents a key step to current-injection laser diodes, but it has not yet been realized. This is mainly due to the challenge of incorporating a resonant cavity into an efficient light-emitting diode (LED) able to sustain intensive carrier injection. Here, CW lasing is reported in an efficient perovskite LED with an integrated distributed feedback resonator, which shows a low lasing threshold of 220 W cm-2 at 110 K. Importantly, the LED works well at a current density of 330 A cm-2 , indicating the carrier injection rate already exceeds the threshold of optically pumping. The results suggest that electrically pumped perovskite laser diodes can be achieved once the Joule heating issue is overcome.

7.
J Phys Chem Lett ; 13(13): 2963-2968, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343691

RESUMO

Here a high-brightness perovskite microcrystalline light-emitting diode (LED) is reported, in which the perovskite microcrystals were grown directly on the conductive substrate and a simple metal-insulator-semiconductor structure was adopted. A peak external quantum efficiency of 0.46% was obtained, which is high for perovskite microcrystalline LEDs. Importantly, the maximum luminance of the device reaches 8848.4 cd m-2, indicating an ultrahigh brightness of >1.2 × 106 cd m-2 for the microcrystals (corresponding to an ultrahigh current density of 80.9 A cm-2), because the light-emitting area of the microcrystals accounts for only ∼0.7% of the device area. In addition, we have studied the degradation of the device at a high current density by in situ microscopic observation and found that a severe Joule heating effect at large injection is the primary problem to be solved to realize electrically pumped perovskite microcrystal lasing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA