Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(4): 460-470, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767425

RESUMO

Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Linfócitos do Interstício Tumoral/enzimologia , Neoplasias/enzimologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/genética , Fator de Transcrição STAT5/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Nat Chem Biol ; 19(6): 703-711, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36732620

RESUMO

Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.


Assuntos
Neoplasias , Fator de Transcrição STAT5 , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38777155

RESUMO

BACKGROUND: Mast cell-derived mediators induce vasodilatation and fluid extravasation, leading to cardiovascular failure in severe anaphylaxis. We previously revealed a synergistic interaction between the cytokine IL-4 and the mast cell-derived mediator histamine in modulating vascular endothelial (VE) dysfunction and severe anaphylaxis. The mechanism by which IL-4 exacerbates histamine-induced VE dysfunction and severe anaphylaxis is unknown. OBJECTIVE: We sought to identify the IL-4-induced molecular processes regulating the amplification of histamine-induced VE barrier dysfunction and the severity of IgE-mediated anaphylactic reactions. METHODS: RNA sequencing, Western blot, Ca2+ imaging, and barrier functional analyses were performed on the VE cell line (EA.hy926). Pharmacologic degraders (selective proteolysis-targeting chimera) and genetic (lentiviral short hairpin RNA) inhibitors were used to determine the roles of signal transducer and activator of transcription 3 (STAT3) and STAT6 in conjunction with in vivo model systems of histamine-induced hypovolemic shock. RESULTS: IL-4 enhancement of histamine-induced VE barrier dysfunction was associated with increased VE-cadherin degradation, intracellular calcium flux, and phosphorylated Src levels and required transcription and de novo protein synthesis. RNA sequencing analyses of IL-4-stimulated VE cells identified dysregulation of genes involved in cell proliferation, cell development, and cell growth, and transcription factor motif analyses revealed a significant enrichment of differential expressed genes with putative STAT3 and STAT6 motif. IL-4 stimulation in EA.hy926 cells induced both serine residue 727 and tyrosine residue 705 phosphorylation of STAT3. Genetic and pharmacologic ablation of VE STAT3 activity revealed a role for STAT3 in basal VE barrier function; however, IL-4 enhancement and histamine-induced VE barrier dysfunction was predominantly STAT3 independent. In contrast, IL-4 enhancement and histamine-induced VE barrier dysfunction was STAT6 dependent. Consistent with this finding, pharmacologic knockdown of STAT6 abrogated IL-4-mediated amplification of histamine-induced hypovolemia. CONCLUSIONS: These studies unveil a novel role of the IL-4/STAT6 signaling axis in the priming of VE cells predisposing to exacerbation of histamine-induced anaphylaxis.

4.
Opt Express ; 32(3): 3698-3709, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297585

RESUMO

In this paper, we use the method of high order TMn1 mode selection from the concept of narrow-band Smith-Purcell radiation (SPR) for powerful, over-mode, multi-gap extended interaction circuit designs toward millimeter wave and Terahertz (THz) region. As a core part, the multiple gaps interaction structure, equivalent to a subwavelength hole array (SHA), excites the narrow band SPR when an electron beam is injected. The SPR energy is collected by a pair of closed cavities, which satisfies (n-1) standing wave units. The SPR energy in the optimized cavity allows a high index n TMn1 mode operation to achieve the strongest Ez field and high characteristic impedance in a closed multi-gap resonant circuit. This provides an effective design to establish a stable high-order TMn1 mode that supports extended interaction circuits with large cross sections. A 0.46 THz extended interaction circuit, employing the novel high order TM51-2π mode operation output structure, has been designed to demonstrate the efficient beam-wave interaction in the proposed system. The method of TMn1 mode selection provides new insight into the understanding of the high-frequency extended interaction circuits by introducing the SPR concept, benefiting the development of millimeter wave and THz vacuum electron devices (VEDs).

5.
Appl Opt ; 63(11): 2973-2980, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856396

RESUMO

The spatial photonic Ising machine has achieved remarkable advancements in solving combinatorial optimization problems. However, it still remains a huge challenge to flexibly map an arbitrary problem to the Ising model. In this paper, we propose a general spatial photonic Ising machine based on the interaction matrix eigendecomposition method. The arbitrary interaction matrix can be configured in the two-dimensional Fourier transformation based spatial photonic Ising model by using values generated by matrix eigendecomposition. The error in the structural representation of the Hamiltonian decreases substantially with the growing number of eigenvalues utilized to form the Ising machine. In combination with the optimization algorithm, as low as ∼65% of the eigenvalues are required by intensity modulation to guarantee the best probability of optimal solution for a 20-vertex graph Max-cut problem, and this percentage decreases to below ∼20% for near-zero probability. The 4-spin experiments and error analysis demonstrate the Hamiltonian linear mapping and ergodic optimization. Our work provides a viable approach for spatial photonic Ising machines to solve arbitrary combinatorial optimization problems with the help of the multi-dimensional optical property.

6.
Proc Natl Acad Sci U S A ; 118(1): e2021450118, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33310900

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.

7.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931492

RESUMO

A staggered vane-shaped slot-line slow-wave structure (SV-SL SWS) for application in W-band traveling wave tubes (TWTs) is proposed in this article. In contrast to the conventional slot-line SWSs with dielectric substrates, the proposed SWS consists only of a thin metal sheet inscribed with periodic grooves and two half-metal enclosures, which means it can be easily manufactured and assembled and has the potential for mass production. This SWS not only solves the problem of the dielectric loading effect but also improves the heat dissipation capability of such structures. Meanwhile, the SWS design presented here covers a -15 dB S11 frequency range from 87.5 to 95 GHz. The 3-D simulation for a TWT based on the suggested SWS is also investigated. Under dual-electron injection conditions with a total voltage of 17.2 kV and a total current of 0.3 A, the maximum output power at 90 GHz is 200 W, with a 3 dB bandwidth up to 4 GHz. With a good potential for fabrication using microfabrication techniques, this structure can be a good candidate for millimeter-wave TWT applications.

8.
J Allergy Clin Immunol ; 152(6): 1550-1568, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652141

RESUMO

BACKGROUND: Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE: We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS: We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS: RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS: These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.


Assuntos
Esofagite Eosinofílica , Humanos , Esofagite Eosinofílica/patologia , Interleucina-13/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células
9.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050577

RESUMO

In this paper, an angular radial extended interaction amplifier (AREIA) that consists of a pair of angular extended interaction cavities is proposed. Both the convergence angle cavity and the divergence angle cavity, which are designed for the converging beam and diverging beam, respectively, are investigated to present the potential of the proposed AREIA. They are proposed and explored to improve the beam-wave interaction capability of W-band extended interaction klystrons (EIKs). Compared to conventional radial cavities, the angular cavities have greatly decreased the ohmic loss area and increased the characteristic impedance. Compared to the sheet beam (0°) cavity, it has been found that the convergence angle cavity has a higher effective impedance and the diverging beam has a weaker space-charge effect under the same ideal electron beam area; the advantages become more obvious as the propagation distance increases. Particle-in-cell (PIC) results have shown that the diverging beam (8°) EIA performs better at an output power of 94 GHz under the condition of lossless, while the converging beam (-2°) EIA has a higher output power of 6.24 kW under the conditions of ohmic loss, an input power of 0.5 W, and an ideal electron beam of 20.5 kV and 1.5 A. When the loss increases and the beam current decreases, the output power of the -2° EIA can be improved by nearly 30% compared to the 0° EIA, and the -2° EIA has a greatly improved beam-wave interaction capacity than conventional EIAs under those conditions. In addition, an angular radial electron gun is designed.

10.
Sensors (Basel) ; 23(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430677

RESUMO

In this paper, a novel staggered double-segmented grating slow-wave structure (SDSG-SWS) is developed for wide-band high-power submillimeter wave traveling-wave tubes (TWTs). The SDSG-SWS can be considered as a combination of the sine waveguide (SW) SWS and the staggered double-grating (SDG) SWS; that is, it is obtained by introducing the rectangular geometric ridges of the SDG-SWS into the SW-SWS. Thus, the SDSG-SWS has the advantages of the wide operating band, high interaction impedance, low ohmic loss, low reflection, and ease of fabrication. The analysis for high-frequency characteristics shows that, compared with the SW-SWS, the SDSG-SWS has higher interaction impedance when their dispersions are at the same level, while the ohmic loss for the two SWSs remains basically unchanged. Furthermore, the calculation results of beam-wave interaction show that the output power is above 16.4 W for the TWT using the SDSG-SWS in the range of 316 GHz-405 GHz with a maximum power of 32.8 W occurring at 340 GHz, whose corresponding maximum electron efficiency is 2.84%, when the operating voltage is 19.2 kV and the current is 60 mA.

11.
PLoS Pathog ; 16(3): e1008417, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32187228

RESUMO

Streptococcus pneumoniae is well known for phase variation between opaque (O) and transparent (T) colonies within clonal populations. While the O variant is specialized in invasive infection (with a thicker capsule and higher resistance to host clearance), the T counterpart possesses a relatively thinner capsule and thereby higher airway adherence and colonization. Our previous study found that phase variation is caused by reversible switches of the "opaque ON-or-OFF" methylomes or methylation patterns of pneumococcal genome, which is dominantly driven by the PsrA-catalyzed inversions of the DNA methyltransferase hsdS genes. This study revealed that switch frequency between the O and T variants is regulated by five transcriptional response regulators (rr) of the two-component systems (TCSs). The mutants of rr06, rr08, rr09, rr11 and rr14 produced significantly fewer O and more T colonies. Further mutagenesis revealed that RR06, RR08, RR09 and RR11 enrich the O variant by modulating the directions of the PsrA-catalyzed inversion reactions. In contrast, the impact of RR14 (RitR) on phase variation is independent of PsrA. Consistently, SMRT sequencing uncovered significantly diminished "opaque ON" methylome in the mutants of rr06, rr08, rr09 and rr11 but not that of rr14. Lastly, the phosphorylated form of RR11 was shown to activate the transcription of comW and two sugar utilization systems that are necessary for maintenance of the "opaque ON" genotype and phenotype. This work has thus uncovered multiple novel mechanisms that balance pneumococcal epigenetic status and physiology.


Assuntos
Proteínas de Bactérias , Metilação de DNA , Enzimas de Restrição-Modificação do DNA , DNA Bacteriano , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Streptococcus pneumoniae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
12.
Opt Lett ; 47(11): 2919-2922, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648964

RESUMO

A smart vector-inspired optical vision guiding (VIOVG) method for autonomous underwater vehicle (AUV) docking and formation is proposed. Unlike traditional optical guiding methods based on LED arrays, the method is inspired by a vector, and uses four laser diodes to form a wing-light pattern to realize smart optical guiding for AUVs. Due to the light scattering effect from water, the four laser diodes can emit four bright and slim laser beams in water, which can be captured by underwater cameras. The intersections of the laser beams form wing-lights as markers for AUV distance and pose estimation. The wing-light pattern is easily tuned and extended by changing the propagation direction and the power of the laser beams beyond the limitation of the physical size of the AUV or docking station. The simulations and experiments show that the proposed method can achieve high precision positioning. A relative distance error of 3.35% is achieved in a positioning experiment at ∼10 m. It has great potential for AUV docking and formation, especially for small AUVs.

13.
BMC Cancer ; 22(1): 752, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820889

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are mainstays of cancer treatment. However, their clinical benefits are often constrained by acquired resistance. To overcome such outcomes, we have rationally engineered APG-2449 as a novel multikinase inhibitor that is highly potent against oncogenic alterations of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and focal adhesion kinase (FAK). Here we present the preclinical evaluation of APG-2449, which exhibits antiproliferative activity in cells carrying ALK fusion or secondary mutations. METHODS: KINOMEscan® and LANCE TR-FRET were used to characterize targets and selectivity of APG-2449. Water-soluble tetrazolium salt (WST-8) viability assay and xenograft tumorigenicity were employed to evaluate therapeutic efficacy of monotherapy or drug combination in preclinical models of solid tumors. Western blot, pharmacokinetic, and flow cytometry analyses, as well as RNA sequencing were used to explore pharmacokinetic-pharmacodynamic correlations and the mechanism of actions driving drug combination synergy. RESULTS: In mice bearing wild-type or ALK/ROS1-mutant non-small-cell lung cancer (NSCLC), APG-2449 demonstrates potent antitumor activity, with correlations between pharmacokinetics and pharmacodynamics in vivo. Through FAK inhibition, APG-2449 sensitizes ovarian xenograft tumors to paclitaxel by reducing CD44+ and aldehyde dehydrogenase 1-positive (ALDH1+) cancer stem cell populations, including ovarian tumors insensitive to carboplatin. In epidermal growth factor receptor (EGFR)-mutated NSCLC xenograft models, APG-2449 enhances EGFR TKI-induced tumor growth inhibition, while the ternary combination of APG-2449 with EGFR (osimertinib) and mitogen-activated extracellular signal-regulated kinase (MEK; trametinib) inhibitors overcomes osimertinib resistance. Mechanistically, phosphorylation of ALK, ROS1, and FAK, as well as their downstream components, is effectively inhibited by APG-2449. CONCLUSIONS: Taken together, our studies demonstrate that APG-2449 exerts potent and durable antitumor activity in human NSCLC and ovarian tumor models when administered alone or in combination with other therapies. A phase 1 clinical trial has been initiated to evaluate the safety and preliminary efficacy of APG-2449 in patients with advanced solid tumors, including ALK+ NSCLC refractory to earlier-generation ALK inhibitors. TRIAL REGISTRATION: Clinicaltrial.gov registration: NCT03917043 (date of first registration, 16/04/2019) and Chinese clinical trial registration: CTR20190468 (date of first registration, 09/04/2019).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Ovarianas , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Feminino , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/metabolismo
14.
Mol Cell ; 53(2): 247-61, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24389101

RESUMO

Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research.


Assuntos
Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Leucemia Aguda Bifenotípica/enzimologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Oligopeptídeos/química , Oligopeptídeos/fisiologia , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transcriptoma/efeitos dos fármacos
15.
EMBO J ; 36(9): 1243-1260, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28320739

RESUMO

Enhancer of zeste homolog 2 (EZH2) has been characterized as a critical oncogene and a promising drug target in human malignant tumors. The current EZH2 inhibitors strongly suppress the enhanced enzymatic function of mutant EZH2 in some lymphomas. However, the recent identification of a PRC2- and methyltransferase-independent role of EZH2 indicates that a complete suppression of all oncogenic functions of EZH2 is needed. Here, we report a unique EZH2-targeting strategy by identifying a gambogenic acid (GNA) derivative as a novel agent that specifically and covalently bound to Cys668 within the EZH2-SET domain, triggering EZH2 degradation through COOH terminus of Hsp70-interacting protein (CHIP)-mediated ubiquitination. This class of inhibitors significantly suppressed H3K27Me3 and effectively reactivated polycomb repressor complex 2 (PRC2)-silenced tumor suppressor genes. Moreover, the novel inhibitors significantly suppressed tumor growth in an EZH2-dependent manner, and tumors bearing a non-GNA-interacting C668S-EZH2 mutation exhibited resistance to the inhibitors. Together, our results identify the inhibition of the signaling pathway that governs GNA-mediated destruction of EZH2 as a promising anti-cancer strategy.


Assuntos
Antineoplásicos/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Xantenos/metabolismo , Linhagem Celular Tumoral , Humanos , Proteólise , Transdução de Sinais/efeitos dos fármacos
16.
Opt Express ; 29(5): 7767-7777, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726272

RESUMO

The use and control of the extraordinary optical transmission through subwavelength hole arrays has enormous application potential in photonic devices. In this paper, we propose a subwavelength hole array with inner tunnels, for which the Smith-Purcell radiation (SPR) with this enhanced transmission phenomenon in THz is excited when the transmission peak locates in the SPR band. The SPR is monitored using particle-in-cell simulations in order to analyze the mechanisms responsible for improving the radiation coherence. Analysis of the electron energy loss reveals that the proposed subwavelength hole array with inner tunnels outperforms a conventional subwavelength grating array with respect to SPR generation efficiency. As SPR plays a significant role in research on particle diagnosis and terahertz radiation sources, the performance of the proposed structure suggests that it has high application potential.

17.
Mol Cell ; 49(5): 897-907, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23394999

RESUMO

Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites; this accumulation was dependent on an E2 enzyme (UBE2M) and an E3 ubiquitin ligase (RNF111). We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (motif interacting with ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process.


Assuntos
Dano ao DNA , DNA/metabolismo , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular , Células Cultivadas , Reparo do DNA , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína NEDD8 , Proteínas Nucleares/metabolismo , Poliadenilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
18.
Sensors (Basel) ; 21(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066299

RESUMO

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/µL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 µL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


Assuntos
Micro-Ondas , Água
19.
Genes Dev ; 27(16): 1752-68, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23964092

RESUMO

Poly-ADP-ribosylation is a unique post-translational modification participating in many biological processes, such as DNA damage response. Here, we demonstrate that a set of Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains recognizes poly(ADP-ribose) (PAR) both in vitro and in vivo. Among these FHA and BRCT domains, the FHA domains of APTX and PNKP interact with iso-ADP-ribose, the linkage of PAR, whereas the BRCT domains of Ligase4, XRCC1, and NBS1 recognize ADP-ribose, the basic unit of PAR. The interactions between PAR and the FHA or BRCT domains mediate the relocation of these domain-containing proteins to DNA damage sites and facilitate the DNA damage response. Moreover, the interaction between PAR and the NBS1 BRCT domain is important for the early activation of ATM during DNA damage response and ATM-dependent cell cycle checkpoint activation. Taken together, our results demonstrate two novel PAR-binding modules that play important roles in DNA damage response.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Dano ao DNA/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligases/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
20.
Biochemistry ; 59(46): 4429-4438, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33166472

RESUMO

Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Vírus dos Macacos de Mason-Pfizer/genética , RNA Viral/química , Eletroforese em Gel de Poliacrilamida Nativa , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Ribossomos/genética , Ribossomos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA