Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Cell ; 83(1): 90-104.e4, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521492

RESUMO

RIG-I is essential for host defense against viral pathogens, as it triggers the release of type I interferons upon encounter with viral RNA molecules. In this study, we show that RIG-I is rapidly and efficiently activated by small quantities of incoming viral RNA and that it relies exclusively on the constitutively expressed resident pool of RIG-I receptors for a strong antiviral response. Live-cell imaging of RIG-I following stimulation with viral or synthetic dsRNA reveals that RIG-I signaling occurs without mass aggregation at the mitochondrial membrane. By contrast, interferon-induced RIG-I protein becomes embedded in cytosolic aggregates that are functionally unrelated to signaling. These findings suggest that endogenous RIG-I efficiently recognizes viral RNA and rapidly relays an antiviral signal to MAVS via a transient signaling complex and that cellular aggregates of RIG-I have a function that is distinct from signaling.


Assuntos
Interferon Tipo I , Transdução de Sinais , Transdução de Sinais/genética , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Antivirais/farmacologia , Interferon Tipo I/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Imunidade Inata
2.
Mol Cell ; 82(21): 4131-4144.e6, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36272408

RESUMO

RIG-I is an essential innate immune receptor for detecting and responding to infection by RNA viruses. RIG-I specifically recognizes the unique molecular features of viral RNA molecules and selectively distinguishes them from closely related RNAs abundant in host cells. The physical basis for this exquisite selectivity is revealed through a series of high-resolution cryo-EM structures of RIG-I in complex with host and viral RNA ligands. These studies demonstrate that RIG-I actively samples double-stranded RNAs in the cytoplasm and distinguishes them by adopting two different types of protein folds. Upon binding viral RNA, RIG-I adopts a high-affinity conformation that is conducive to signaling, while host RNA induces an autoinhibited conformation that stimulates RNA release. By coupling protein folding with RNA binding selectivity, RIG-I distinguishes RNA molecules that differ by as little as one phosphate group, thereby explaining the molecular basis for selective antiviral sensing and the induction of autoimmunity upon RIG-I dysregulation.


Assuntos
RNA Helicases DEAD-box , RNA Viral , RNA Viral/metabolismo , Ligantes , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Proteína DEAD-box 58/metabolismo , RNA de Cadeia Dupla , Proteínas de Transporte/metabolismo
3.
Immunol Rev ; 304(1): 154-168, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514601

RESUMO

RIG-I is our first line of defense against RNA viruses, serving as a pattern recognition receptor that identifies molecular features common among dsRNA and ssRNA viral pathogens. RIG-I is maintained in an inactive conformation as it samples the cellular space for pathogenic RNAs. Upon encounter with the triphosphorylated terminus of blunt-ended viral RNA duplexes, the receptor changes conformation and releases a pair of signaling domains (CARDs) that are selectively modified and interact with an adapter protein (MAVS), thereby triggering a signaling cascade that stimulates transcription of interferons. Here, we describe the structural determinants for specific RIG-I activation by viral RNA, and we describe the strategies by which RIG-I remains inactivated in the presence of host RNAs. From the initial RNA triggering event to the final stages of interferon expression, we describe the experimental evidence underpinning our working knowledge of RIG-I signaling. We draw parallels with behavior of related proteins MDA5 and LGP2, describing evolutionary implications of their collective surveillance of the cell. We conclude by describing the cell biology and immunological investigations that will be needed to accurately describe the role of RIG-I in innate immunity and to provide the necessary foundation for pharmacological manipulation of this important receptor.


Assuntos
RNA Helicases DEAD-box , RNA de Cadeia Dupla , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , RNA Viral , Transdução de Sinais
4.
Molecules ; 29(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39275098

RESUMO

Pinelliae Rhizoma (PR), a highly esteemed traditional Chinese medicinal herb, is widely applied in clinical settings due to its diverse pharmacological effects, including antitussive, expectorant, antiemetic, sedative-hypnotic, and antitumor activities. Pinellia ternata exhibits morphological variation in its leaves, with types resembling peach, bamboo, and willow leaves. However, the chemical composition differences among the corresponding rhizomes of these leaf phenotypes remain unelucidated. This pioneering research employed Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to conduct the in situ identification and spatial profiling of 35 PR metabolites in PR, comprising 12 alkaloids, 4 organic acids, 12 amino acids, 5 flavonoids, 1 sterol, and 1 anthraquinone. Our findings revealed distinct spatial distribution patterns of secondary metabolites within the rhizome tissues of varying leaf types. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) effectively differentiated between rhizomes associated with different leaf morphologies. Furthermore, this study identified five potential differential biomarkers-methylophiopogonanone B, inosine, cytidine, adenine, and leucine/isoleucine-that elucidate the biochemical distinctions among leaf types. The precise tissue-specific localization of these secondary metabolites offers compelling insights into the specialized accumulation of bioactive compounds in medicinal plants, thereby enhancing our comprehension of PR's therapeutic potential.


Assuntos
Metabolômica , Folhas de Planta , Rizoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Folhas de Planta/química , Folhas de Planta/metabolismo , Metabolômica/métodos , Rizoma/química , Rizoma/metabolismo , Pinellia/química , Pinellia/metabolismo , Metaboloma , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia
5.
Proc Natl Acad Sci U S A ; 117(12): 6910-6917, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152121

RESUMO

Auxin is a class of plant hormone that plays a crucial role in the life cycle of plants, particularly in the growth response of plants to ever-changing environments. Since the auxin responses are concentration-dependent and higher auxin concentrations might often be inhibitory, the optimal endogenous auxin level must be closely controlled. However, the underlying mechanism governing auxin homeostasis remains largely unknown. In this study, a UDP-glycosyltransferase (UGT76F1) was identified from Arabidopsis thaliana, which participates in the regulation of auxin homeostasis by glucosylation of indole-3-pyruvic acid (IPyA), a major precursor of the auxin indole-3-acetic acid (IAA) biosynthesis, in the formation of IPyA glucose conjugates (IPyA-Glc). In addition, UGT76F1 was found to mediate hypocotyl growth by modulating active auxin levels in a light- and temperature-dependent manner. Moreover, the transcription of UGT76F1 was demonstrated to be directly and negatively regulated by PIF4, which is a key integrator of both light and temperature signaling pathways. This study sheds a light on the trade-off between IAA biosynthesis and IPyA-Glc formation in controlling auxin levels and reveals a regulatory mechanism for plant growth adaptation to environmental changes through glucosylation of IPyA.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Indóis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Glucosiltransferases/metabolismo , Glicosilação , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Indóis/química , Luz , Reguladores de Crescimento de Plantas/farmacologia , Plântula , Temperatura
6.
Plant Physiol ; 180(4): 2167-2181, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962291

RESUMO

Plant systemic acquired resistance (SAR) provides an efficient broad-spectrum immune response to pathogens. SAR involves mobile signal molecules that are generated by infected tissues and transported to systemic tissues. Methyl salicylate (MeSA), a molecule that can be converted to salicylic acid (SA), is an essential signal for establishing SAR, particularly under a short period of exposure to light after pathogen infection. Thus, the control of MeSA homeostasis is important for an optimal SAR response. Here, we characterized a uridine diphosphate-glycosyltransferase, UGT71C3, in Arabidopsis (Arabidopsis thaliana), which was induced mainly in leaf tissue by pathogens including Pst DC3000/avrRpt2 (Pseudomonas syringae pv tomato strain DC3000 expressing avrRpt2). Biochemical analysis indicated that UGT71C3 exhibited strong enzymatic activity toward MeSA to form MeSA glucosides in vitro and in vivo. After primary pathogen infection by Pst DC3000/avrRpt2, ugt71c3 knockout mutants exhibited more powerful systemic resistance to secondary pathogen infection than that of wild-type plants, whereas systemic resistance in UGT71C3 overexpression lines was compromised. In agreement, after primary infection of local leaves, ugt71c3 knockout mutants accumulated significantly more systemic MeSA and SA than that in wild-type plants. whereas UGT71C3 overexpression lines accumulated less. Our results suggest that MeSA glucosylation by UGT71C3 facilitates negative regulation of the SAR response by modulating homeostasis of MeSA and SA. This study unveils further SAR regulation mechanisms and highlights the role of glucosylation of MeSA and potentially other systemic signals in negatively modulating plant systemic defense.


Assuntos
Arabidopsis/metabolismo , Salicilatos/metabolismo , Ácido Salicílico/isolamento & purificação , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais
7.
Molecules ; 24(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344969

RESUMO

The present work mainly describes the preparation of acetylated mycelia polysaccharides (AMPS) from Pleurotus djamor and investigates the antioxidant and anti-aging effects in d-galactose-induced aging mice. The optimized procedure indicates the acetyl substitution degree of AMPS is 0.54 ± 0.04 under the conditions of a reaction time of 56 h, a reaction temperature of 37 °C, and 4 mL of added acetic anhydride. The in vitro analysis and in vivo animal experiments indicate that the AMPS could alleviate the aging properties by scavenging the radicals, elevating the enzyme activities, and reducing the lipid contents. As for serum levels, the AMPS can improve the serum biochemical indices and enhance immunological activity. The histopathological observations indicate that the injuries to the liver, kidney, and brain can be remitted by AMPS intervention. The characterization showed that AMPS was one kind of ß-pyranose with the weight-average molecular weights of 3.61 × 105 Da and the major monosaccharides of mannose and glucose. The results suggest that AMPS can be used as a dietary supplement and functional food for the prevention of aging and age-related diseases.


Assuntos
Antioxidantes/química , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Micélio/química , Pleurotus/química , Acetilação , Animais , Antioxidantes/farmacologia , Biomarcadores , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Análise Espectral
8.
Molecules ; 24(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569331

RESUMO

As an irreversible and complex degenerative physiological process, the treatment for aging seems strategically necessary, and polysaccharides play important roles against aging owing to their abundant bioactivities. In this paper, the antioxidant and anti-aging activities of Flammulina velutipes polysaccharides (FPS) and its sulfated FPS (SFPS) on d-galactose-induced aging mice were investigated. The in vitro antioxidant activities demonstrated that SFPS had strong reducing power and superior scavenging effects on 2, 2-diphenylpicrylhydrazyl (DPPH), hydroxyl radicals and the chelating activities of Fe2+. The in vivo animal experiments manifested that the SFPS showed superior antioxidant and protective abilities against the d-galactose-induced aging by increasing the antioxidant enzyme activities, decreasing lipid peroxidation, improving the inflammatory response and ameliorating the anile condition of mice. Furthermore, the structural analysis of SFPS was investigated through FT-IR, NMR, and HPLC analysis, and the results indicated that SFPS was a homogeneous heteropolysaccharide with a weight-average molecular weight of 2.81 × 103 Da. Furthermore, SFPS has also changed in characteristic functional groups and monosaccharide composition compared to FPS. These results suggested that sulfated modification could enhance the anti-oxidation, anti-aging and protective activities of F. velutipes polysaccharides, which may provide references for the development of functional foods and natural medicines.


Assuntos
Antioxidantes/farmacologia , Flammulina/química , Polissacarídeos Fúngicos/farmacologia , Substâncias Protetoras/farmacologia , Antioxidantes/química , Polissacarídeos Fúngicos/química , Monossacarídeos/análise , Substâncias Protetoras/química , Análise Espectral
9.
Biomed Eng Online ; 17(1): 97, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016971

RESUMO

BACKGROUND: An osteon consists of a multi-layered bone matrix and interstitial fluid flow in the lacunar-canalicular system. Loading-induced interstitial fluid flow in the lacunar-canalicular system is critical for osteocyte mechanotransduction and bone remodelling. METHODS: To investigate the effects of the lamellar structure and heterogeneous material properties of the osteon on the distributions of interstitial fluid flow and seepage velocity, an osteon is idealized as a hollow two-dimensional poroelastic multi-layered slab model subjected to cyclic loading. Based on poroelastic theory, the analytical solutions of interstitial fluid pressure and seepage velocity in lacunar-canalicular pores were obtained. RESULTS: The results show that strain magnitude has a greater influence on interstitial fluid pressure than loading frequency. Interestingly, the heterogeneous distribution of permeability produces remarkable variations in interstitial fluid pressure and seepage velocity in the cross-section of cortical bone. In addition, interstitial fluid flow stimuli to osteocytes are mostly controlled by the value of permeability at the surface of the osteon rather than at the inner wall of the osteon. CONCLUSION: Interstitial fluid flow induced by cycling loading stimuli to an osteocyte housed in a lacunar-canalicular pore is not only correlated with strain amplitude and loading frequency, but also closely correlated with the spatial gradient distribution of permeability. This model can help us better understand the fluid flow stimuli to osteocytes during bone remodelling.


Assuntos
Elasticidade , Ósteon/fisiologia , Modelos Biológicos , Ósteon/citologia , Hidrodinâmica , Mecanotransdução Celular , Permeabilidade , Porosidade , Pressão , Suporte de Carga
10.
NAR Mol Med ; 1(1): ugae002, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318492

RESUMO

Hsp70 (70 kDa heat shock protein) performs molecular chaperone functions by assisting the folding of newly synthesized and misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases, including neurodegenerative disorders and cancers. It is well established that, immediately after heat shock, Hsp70 gene expression is mediated by a canonical mechanism of cap-dependent translation. However, the molecular mechanism of Hsp70 expression during heat shock remains elusive. Intriguingly, the 5' end of Hsp70 messenger RNA (mRNA) appears to form a compact structure with the potential to regulate protein expression in a cap-independent manner. Here, we determined the minimal length of the mHsp70 5'-terminal mRNA sequence that is required for RNA folding into a highly compact structure. This span of this RNA element was mapped and the secondary structure characterized by chemical probing, resulting in a secondary structural model that includes multiple stable stems, including one containing the canonical start codon. All of these components, including a short stretch of the 5' open reading frame (ORF), were shown to be vital for RNA folding. This work provides a structural basis for future investigations on the role of translational regulatory structures in the 5' untranslated region and ORF sequences of Hsp70 during heat shock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA