Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259667

RESUMO

Changes in plant morphology due to mechanical stimulation are known as thigmo responses. As climbing organs in plants, tendrils can sense mechanical stimulation after attaching to a support and then change their morphology within a short time. Here, the thigmo responses of cucumber tendril were investigated. Our results showed that mechanical stimulation stopped tendril elongation and that tendril length was determined by the distance from the support in cucumber. The mimicry touch treatment indicated that mechanical stimulation stopped tendril elongation by inhibiting cell expansion. RNA-seq data showed that three gibberellin (GA) metabolic genes (CsGA2ox3, CsCYP714A2, and CsCYP714A3) were upregulated in mechanically stimulated tendrils, and a major endogenous bio-active GA (GA4) was reduced in mechanically stimulated tendrils. The roles of CsGA2ox3, CsCYP714A2, and CsCYP714A3 in GA deactivation were confirmed by their overexpression in transgenic Arabidopsis. Moreover, exogenous GA treatment recovered tendril elongation under mechanical stimulation, whereas exogenous uniconazole treatment inhibited tendril elongation without mechanical stimulation, suggesting that mechanical stimulation stopped tendril elongation, depending on GA deactivation. In summary, our results suggest that GA deactivation plays an important role in tendril thigmo response, ensuring that tendrils obtain a suitable final length according to their distance from the support in cucumber.

2.
J Cell Biochem ; : e30639, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148265

RESUMO

Acute lung injury (ALI) is a destructive respiratory disease characterized by alveolar structural destruction and excessive inflammation responses. Aerobic glycolysis of macrophages plays a crucial role in the pathophysiology of ALI. Previous studies have shown that the expression of the key rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in inflammatory cells is significantly increased, which promotes an increase in the rate of glycolysis in inflammatory cells. However, little is known about the biological functions of PFKFB3 in macrophage inflammation and ALI. In this study, we identified that PFKFB3 is markedly increased in lipopolysaccharide (LPS)-induced ALI mice and macrophages. Knockdown of pfkfb3 attenuated LPS-induced glycolytic flux, decreased the release of pro-inflammatory cytokines, and inactivated NF-κB signaling pathway in macrophages. Subsequently, we found that dehydrocostus lactone (DL), a natural sesquiterpene lactone, significantly decreased both the mRNA and protein levels of PFKFB3. Furthermore, it reduced the release of inflammatory cytokines and inactivated NF-κB pathways in vitro. Accordingly, DL alleviated LPS-induced pulmonary edema and reduced the infiltration of inflammatory cells in mouse lung tissue. In summary, our study reveals the vital role of PFKFB3 in LPS-induced inflammation and discovers a novel molecular mechanism underlying DL's protective effects on ALI.

3.
J Neuroinflammation ; 21(1): 229, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294682

RESUMO

BACKGROUND: Overactivated microglia are a key contributor to Parkinson's disease (PD) by inducing neuroinflammation. CD200R1, a membrane glycoprotein mainly found on microglia, is crucial for maintaining quiescence with its dysregulation linked to microglia's abnormal activation. We and other groups have reported a decline in CD200R1 levels in several neurological disorders including PD. However, the mechanism regulating CD200R1 expression and the specific reasons for its reduction in PD remain largely unexplored. Given the pivotal role of transcription factors in gene expression, this study aimed to elucidate the transcriptional regulation of CD200R1 and its implications in PD. METHODS: The CD200R1 promoter core region was identified via luciferase assays. Potential transcription factors were predicted using the UCSC ChIP-seq database and JASPAR. NFKB1 binding to the CD200R1 core promoter was substantiated through electrophoretic mobility shift and chromatin immunoprecipitation assays. Knocking-down or overexpressing NFKB1 validated its regulatory effect on CD200R1. Correlation between decreased CD200R1 and deficient NFKB1 was studied using Genotype-Tissue Expression database. The clinical samples of the peripheral blood mononuclear cells were acquired from 44 PD patients (mean age 64.13 ± 9.78, 43.2% male, median Hoehn-Yahr stage 1.77) and 45 controls (mean age 64.70 ± 9.41, 52.1% male). NFKB1 knockout mice were utilized to study the impact of NFKB1 on CD200R1 expression and to assess their roles in PD pathophysiology. RESULTS: The study identified the CD200R1 core promoter region, located 482 to 146 bp upstream of its translation initiation site, was directly regulated by NFKB1. Significant correlation between NFKB1 and CD200R1 expression was observed in human PMBCs. Both NFKB1 and CD200R1 were significantly decreased in PD patient samples. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. CONCLUSION: Our study identified that NFKB1 served as a direct regulator of CD200R1. Reduced NFKB1 played a critical role in CD200R1 dysregulation and subsequent microglia overactivation in PD. These findings provide evidence that targeting the NFKB1-CD200R1 axis would be a novel therapeutic strategy for PD.


Assuntos
Subunidade p50 de NF-kappa B , Receptores de Orexina , Doença de Parkinson , Animais , Humanos , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/genética , Idoso , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica , Microglia/metabolismo , Regiões Promotoras Genéticas
4.
Plant Physiol ; 192(4): 2756-2767, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37084381

RESUMO

As a climbing organ, the tendril undergoes rapid elongation to increase its length to locate support within a short growth time. However, the molecular mechanism underlying this observation is poorly understood. Here, tendril development was divided into 4 stages in cucumber (Cucumis sativus L.) along with its growth. Phenotypic observations and section analyses showed that the rapid elongation of tendril primarily happened during stage 3 and was mainly due to cell expansion. RNA-seq analysis showed that PACLOBUTRAZOL-RESISTANCE4 (CsPRE4) was highly expressed in the tendril. Our RNAi studies in cucumber and transgenic overexpression in Arabidopsis (Arabidopsis thaliana) suggested that CsPRE4 functions as a conserved activator of cell expansion to promote cell expansion and tendril elongation. Through a triantagonistic HLH (helix-loop-helix)-HLH-bHLH (basic helix-loop-helix) cascade, CsPRE4-CsPAR1 (PHYTOCHROME RAPIDLY REGULATED1)-CsBEE1 (BR-ENHANCED EXPRESSION 1), CsPRE4 released the transcription factor CsBEE1, which activated expansin A12 (CsEXPA12) to loosen the cell wall structure in tendrils. Gibberellin (GA) promoted tendril elongation by modulating cell expansion, and CsPRE4 expression was induced by exogenous GA treatment, suggesting that CsPRE4 acts downstream of GA in regulating tendril elongation. In summary, our work suggested a CsPRE4-CsPAR1-CsBEE1-CsEXPA12 pathway in regulating cell expansion in cucumber tendrils, which might enable rapid tendril elongation to quickly locate support.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Cardiovasc Magn Reson ; 26(2): 101047, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825155

RESUMO

BACKGROUND: Coronary artery wall contrast enhancement (CE) has been applied to non-invasive visualization of changes to the coronary artery wall in systemic lupus erythematosus (SLE). This study investigated the feasibility of quantifying CE to detect coronary involvement in IgG4-related disease (IgG4-RD), as well as the influence on disease activity assessment. METHODS: A total of 93 subjects (31 IgG4-RD; 29 SLE; 33 controls) were recruited in the study. Coronary artery wall imaging was performed in a 3.0 T MRI scanner. Serological markers and IgG4-RD Responder Index (IgG4-RD-RI) scores were collected for correlation analysis. RESULTS: Coronary wall CE was observed in 29 (94 %) IgG4-RD patients and 22 (76 %) SLE patients. Contrast-to-noise ratio (CNR) and total CE area were significantly higher in patient groups compared to controls (CNR: 6.1 ± 2.7 [IgG4-RD] v. 4.2 ± 2.3 [SLE] v. 1.9 ± 1.5 [control], P < 0.001; Total CE area: 3.0 [3.0-6.6] v. 1.7 [1.5-2.6] v. 0.3 [0.3-0.9], P < 0.001). In the IgG4-RD group, CNR and total CE area were correlated with the RI (CNR: r = 0.55, P = 0.002; total CE area: r = 0.39, P = 0.031). RI´ scored considering coronary involvement by CE, differed significantly from RI scored without consideration of CE (RI v. RI´: 15 ± 6 v. 16 ± 6, P < 0.001). CONCLUSIONS: Visualization and quantification of CMR coronary CE by CNR and total CE area could be utilized to detect subclinical and clinical coronary wall involvement, which is prevalent in IgG4-RD. The potential inclusion of small and medium-sized vessel involvements in the assessment of disease activity in IgG4-RD is worthy of further investigation.

6.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38953446

RESUMO

Two-dimensional (2D) Sn-based perovskites exhibit significant potential in diverse optoelectronic applications, such as on-chip lasers and photodetectors. Yet, the underlying mechanism behind the frequently observed dual-peak emission in 2D Sn-based perovskites remains a subject of intense debate, and there is a lack of research on the carrier dynamics in these materials. In this study, we investigate these issues in a representative 2D Sn-based perovskite, namely, PEA2SnI4, through temperature-, excitation intensity-, angle-, and time-dependent photoluminescence studies. The results indicate that the high- and low-energy peaks originate from in-face and out-of-face dipole transitions, respectively. In addition, we observe an anomalous increase in the non-radiative recombination rate as temperature decreases. After ruling out enhanced electron-phonon coupling and Auger recombination as potential causes of the anomalous carrier dynamics, we propose that the significantly increased exciton binding energy (Eb) plays a decisive role. The increased Eb arises from enhanced electronic localization, a consequence of weakened lattice distortion at low temperatures, as confirmed by first-principles calculations and temperature-dependent x-ray diffraction measurements. These findings offer valuable insights into the electronic processes in the unique 2D Sn-based perovskites.

7.
World J Surg Oncol ; 22(1): 22, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245723

RESUMO

BACKGROUND: Transforming growth factor ß (TGFß) is a critical regulator of lung metastasis of breast cancer and is correlated with the prognosis of breast cancer. However, not all TGFß stimulated genes were functional and prognostic in breast cancer lung metastatic progress. In this study, we tried to determine the prognosis of TGFß stimulated genes in breast cancer. METHODS: TGFß stimulated genes in MDA-MB-231 cells and lung metastasis-associated genes in LM2-4175 cells were identified through gene expression microarray. The prognosis of the induced gene (TGFBI) in breast cancer was determined through bioinformatics analysis and validated using tissue microarray. The immune infiltrations of breast cancer were determined through "ESTIMATE" and "TIMER". RESULTS: TGFBI was up-regulated by TGFß treatment and over-expressed in LM2-4175 cells. Through bioinformatics analysis, we found that higher expression of TGFBI was associated with shorted lung metastasis-free survival, relapse-free survival, disease-free survival, and overall survival of breast cancer. Moreover, the prognosis of TGFBI was validated in 139 Chinese breast cancer patients. Chinese breast cancer patients with higher TGFBI expression had lower overall survival. Correspondingly, breast cancer patients with higher TGFBI methylation had higher overall survival. TGFBI was correlated with the score of the TGFß signaling pathway and multiple immune-related signaling pathways in breast cancer. The stromal score, immune score, and the infiltrations of immune cells were also correlated with TGFBI expression in breast cancer. CONCLUSIONS: TGFß-induced gene TGFBI was correlated with the prognosis and immune infiltrations of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Recidiva Local de Neoplasia , Prognóstico , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Crescimento Transformadores , Linhagem Celular Tumoral
8.
Ecotoxicol Environ Saf ; 270: 115907, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176185

RESUMO

Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Fluoretos/toxicidade , Fluoretação , Desenvolvimento Embrionário , Saco Vitelino , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
9.
Int J Sports Med ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648799

RESUMO

Cardiovascular disease is a leading cause of morbidity and mortality, and exercise-training (TRN) is known to reduce risk factors and protect the heart from ischemia and reperfusion injury. Though the cardioprotective effects of exercise are well-documented, underlying mechanisms are not well understood. This review highlights recent findings and focuses on cardiac factors with emphasis on K+ channel control of the action potential duration (APD), ß-adrenergic and adenosine regulation of cardiomyocyte function, and mitochondrial Ca2+ regulation. TRN-induced prolongation and shortening of the APD at low and high activation rates, respectively, is discussed in the context of a reduced response of the sarcolemma delayed rectifier potassium channel (IK) and increased content and activation of the sarcolemma KATP channel. A proposed mechanism underlying the latter is presented, including the phosphatidylinositol-3kinase/protein kinase B pathway. TRN induced increases in cardiomyocyte contractility and the response to adrenergic agonists are discussed. The TRN-induced protection from reperfusion injury is highlighted by the increased content and activation of the sarcolemma KATP channel and the increased phosphorylated glycogen synthase kinase-3ß, which aid in preventing mitochondrial Ca2+ overload and mitochondria-triggered apoptosis. Finally, a brief section is presented on the increased incidences of atrial fibrillation associated with age and in life-long exercisers.

10.
Nano Lett ; 23(24): 11860-11865, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085911

RESUMO

The origin of the long lifetime of self-trapped exciton emission in low-dimensional copper halides is currently the subject of extensive debate. In this study, we address this issue in a prototypical zero-dimensional copper halide, Cs2(C18)2Cu2I4-DMSO, through magneto-optical studies at low temperatures down to 0.2 K. Our results exclude spin-forbidden dark states and indirect phonon-assisted recombination as the origin of the long photoluminescence lifetime. Instead, we propose that the minimal Franck-Condon factor of the radiative transition from excited states to the ground state is the decisive factor, based on the transition probability analysis. Our findings offer insights into the electronic processes in low-dimensional copper halides and have the potential to advance the application of these distinctive materials in optoelectronics.

11.
J Environ Manage ; 367: 122042, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083947

RESUMO

With the steady development of global economy and the rapid increase of population, it is of great significance to quantify the supply capacity of ecosystem services and reveal its driving factors for sustainable development. We quantify the ecosystem supply service intensity (ESSI) using multiple sources of natural and cultural data from 2000 to 2020. We then jointly analyze this data with the information entropy of the land to obtain the temporal and spatial evolution law of ESSI under multiple scales in China. At the same time, according to the spatial distribution of ESSI in China, the concept of China's ecosystem supply service intensity development equilibrium line (ESSIL) is innovatively put forward. The results show that the spatial distribution pattern of China's ESSI is symmetrical with the ESSIL which is nearly orthogonal to Hu Huanyong line. Because of the different regional development policies, different regions with different economic levels have different driving effects on land change. Furthermore, due to the country's large size, the primary ESSI drivers vary greatly throughout its various regions. The assessment of the ESSI changes in China from multi-scale, combined with the effects of land cover change, climate and human activities, and put forward a new pattern distribution mode of ESSI in China, which provides a new perspective for formulating ecologically sustainable development strategies in large-scale areas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Desenvolvimento Sustentável , China , Humanos , Análise Espaço-Temporal
12.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3912-3923, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39099365

RESUMO

In this study, we delved into the prototypical components and metabolites of Platycodonis Radix extracts(PRE) from Tongcheng city in plasma, urine and feces of rats, and revealed its metabolic pathways and metabolic rules in vivo. The prototypical components and metabolites of PRE in rats were characterized and identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and mass defect filter(MDF). The biological samples were analyzed by ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 µm), with 0.1% formic acid water(A)-0.1% formic acid acetonitrile(B) as mobile phase, and the biological samples were analyzed in negative ion mode by electrospray ionization mass spectrometry(ESI-MS). Twelve prototypical saponins and twenty-seven metabolites were detected in plasma, urine and feces of rats treated with PRE by oral administration. Eleven prototypical components and nine metabolites were detected in plasma, eleven prototypical components and eight metabo-lites were detected in urine, and ten prototypical components and twenty metabolites were detected in feces. Further studies showed that the metabolic pathways of PRE in rats mainly include oxidation, reduction, acetylation, stepwise hydrolytic deglycosylation, glucuronidation and so on. This study provides a scientific basis for clarifying the pharmacological basis and mechanism of PRE from Tongcheng city.


Assuntos
Medicamentos de Ervas Chinesas , Redes e Vias Metabólicas , Platycodon , Ratos Sprague-Dawley , Animais , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Masculino , Cromatografia Líquida de Alta Pressão , Platycodon/química , Fezes/química , Espectrometria de Massas por Ionização por Electrospray , Saponinas/metabolismo , China
13.
Hum Brain Mapp ; 44(2): 599-611, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36161679

RESUMO

Bipolar disorder (BD) is a serious mental disorder involving widespread abnormal interactions between brain regions, and it is believed to be associated with imbalanced functions in the brain. However, how this brain imbalance underlies distinct BD symptoms remains poorly understood. Here, we used a nested-spectral partition (NSP) method to study the segregation, integration, and balance in resting-state brain functional networks in BD patients and healthy controls (HCs). We first confirmed that there was a high deviation in the brain functional network toward more segregation in BD patients than in HCs and that the limbic system had the largest alteration. Second, we demonstrated a network balance of segregation and integration that corresponded to lower anxiety in BD patients but was not related to other symptoms. Subsequently, based on a machine-learning approach, we identified different system-level mechanisms underlying distinct BD symptoms and found that the features related to the brain network balance could predict BD symptoms better than graph theory analyses. Finally, we studied attention-deficit/hyperactivity disorder (ADHD) symptoms in BD patients and identified specific patterns that distinctly predicted ADHD and BD scores, as well as their shared common domains. Our findings supported an association of brain imbalance with anxiety symptom in BD patients and provided a potential network signature for diagnosing BD. These results contribute to further understanding the neuropathology of BD and to screening ADHD in BD patients.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Humanos , Transtorno Bipolar/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Sistema Límbico , Ansiedade
14.
Development ; 147(8)2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32188631

RESUMO

Continual spermatogenesis relies on the actions of an undifferentiated spermatogonial population that is composed of stem cells and progenitors. Here, using mouse models, we explored the role of RNA-binding proteins (RBPs) in regulation of the biological activities of this population. Proteins bound to polyadenylated RNAs in primary cultures of undifferentiated spermatogonia were captured with oligo (dT)-conjugated beads after UV-crosslinking and profiled by proteomics (termed mRBPome capture), yielding a putative repertoire of 473 RBPs. From this database, the RBP TRIM71 was identified and found to be expressed by stem and progenitor spermatogonia in prepubertal and adult mouse testes. Tissue-specific deletion of TRIM71 in the male germline led to reduction of the undifferentiated spermatogonial population and a block in transition to the differentiating state. Collectively, these findings demonstrate a key role of the RBP system in regulation of the spermatogenic lineage and may provide clues about the influence of RBPs on the biology of progenitor cell populations in other lineages.


Assuntos
Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogônias/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Testículo/citologia , Regulação para Cima/genética
15.
J Neuroinflammation ; 20(1): 110, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158916

RESUMO

BACKGROUND: Depression and dysosmia have been regarded as primary neurological symptoms in COVID-19 patients, the mechanism of which remains unclear. Current studies have demonstrated that the SARS-CoV-2 envelope (E) protein is a pro-inflammatory factor sensed by Toll-like receptor 2 (TLR2), suggesting the pathological feature of E protein is independent of viral infection. In this study, we aim to ascertain the role of E protein in depression, dysosmia and associated neuroinflammation in the central nervous system (CNS). METHODS: Depression-like behaviors and olfactory function were observed in both female and male mice receiving intracisternal injection of E protein. Immunohistochemistry was applied in conjunction with RT-PCR to evaluate glial activation, blood-brain barrier status and mediators synthesis in the cortex, hippocampus and olfactory bulb. TLR2 was pharmacologically blocked to determine its role in E protein-related depression-like behaviors and dysosmia in mice. RESULTS: Intracisternal injection of E protein evoked depression-like behaviors and dysosmia in both female and male mice. Immunohistochemistry suggested that the E protein upregulated IBA1 and GFAP in the cortex, hippocampus and olfactory bulb, while ZO-1 was downregulated. Moreover, IL-1ß, TNF-α, IL-6, CCL2, MMP2 and CSF1 were upregulated in both cortex and hippocampus, whereas IL-1ß, IL-6 and CCL2 were upregulated in the olfactory bulb. Furtherly, inhibiting microglia, rather than astrocytes, alleviated depression-like behaviors and dysosmia induced by E protein. Finally, RT-PCR and immunohistochemistry suggested that TLR2 was upregulated in the cortex, hippocampus and olfactory bulb, the blocking of which mitigated depression-like behaviors and dysosmia induced by E protein. CONCLUSIONS: Our study demonstrates that envelope protein could directly induce depression-like behaviors, dysosmia, and obvious neuroinflammation in CNS. TLR2 mediated depression-like behaviors and dysosmia induced by envelope protein, which could serve as a promising therapeutic target for neurological manifestation in COVID-19 patients.


Assuntos
COVID-19 , Transtornos do Olfato , Feminino , Masculino , Animais , Camundongos , Depressão/etiologia , Interleucina-6 , Doenças Neuroinflamatórias , SARS-CoV-2 , Receptor 2 Toll-Like , Transtornos do Olfato/etiologia
16.
Appl Environ Microbiol ; 89(7): e0058123, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338346

RESUMO

Phage-encoded endolysins are emerging antibacterial agents based on their ability to efficiently degrade peptidoglycan on Gram-positive bacteria, but the envelope characteristics of Gram-negative bacteria limit their application. Engineering modifications of endolysins can improve the optimization of their penetrative and antibacterial properties. This study constructed a screening platform to screen for engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular antibacterial activity against Escherichia coli. An oligonucleotide of 20 repeated NNK codons was inserted upstream of the endolysin gene Bp7e to construct a chimeric endolysin library in the pColdTF vector. The chimeric Art-Bp7e proteins were expressed by transforming the plasmid library into E. coli BL21 and released by chloroform fumigation, and the protein activities were evaluated by the spotting method and the colony-counting method to screen for promising proteins. Sequence analysis showed that all screened proteins with extracellular activities had a chimeric peptide with a positive charge and an α-helical structure. Also, a representative protein, Art-Bp7e6, was further characterized. It exhibited broad antibacterial activity against E. coli (7/21), Salmonella enterica serovar Enteritidis (4/10), Pseudomonas aeruginosa (3/10), and even Staphylococcus aureus (1/10). In the transmembrane process, the chimeric peptide of Art-Bp7e6 depolarized the host cell envelope, increased the permeability of the cell, and facilitated the movement of Art-Bp7e6 across the envelope to hydrolyze the peptidoglycan. In conclusion, the screening platform successfully screened for chimeric endolysins with extracellular antibacterial activities against Gram-negative bacteria, which provides methodological support for the further screening of engineered endolysins with high extracellular activities against Gram-negative bacteria. Also, the established platform showed broad application prospects and can be used to screen various proteins. IMPORTANCE The presence of the envelope in Gram-negative bacteria limits the use of phage endolysins, and engineering endolysins is an efficient way to optimize their penetrative and antibacterial properties. We built a platform for endolysin engineering and screening. A random peptide was fused with the phage endolysin Bp7e to construct a chimeric endolysin library, and engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular activity against Gram-negative bacteria were successfully screened from the library. The purposeful Art-Bp7e had a chimeric peptide with an abundant positive charge and an α-helical structure, which led Bp7e to acquire the ability for the extracellular lysis of Gram-negative bacteria and showed a broad lysis spectrum. The platform provides a huge library capacity without the limitations of reported proteins or peptides. It can be utilized for the further screening of optimal endolysins against Gram-negative bacteria as well as for the screening of additional proteins with specific modifications.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/metabolismo , Bactérias Gram-Negativas/metabolismo , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química
17.
Cell Tissue Res ; 391(2): 375-391, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36422735

RESUMO

Bepridil is a commonly used medication for arrhythmia and heart failure. It primarily exerts hemodynamic effects by inhibiting Na+/K+ movement and regulating the Na+/Ca2+ exchange. In comparison to other Ca2+ inhibitors, bepridil has a long half-life and a complex pharmacology. Additionally, it is widely used in antiviral research and the treatment of various diseases. However, the toxicity of this compound and its other possible effects on embryonic development are unknown. In this study, we investigated the toxicity of bepridil on rat myocardial H9c2 cells. After treatment with bepridil, the cells became overloaded with Ca2+ and entered a state of cytoplasmic vacuolization and nuclear abnormality. Bepridil treatment resulted in several morphological abnormalities in zebrafish embryo models, including pericardium enlargement, yolk sac swelling, and growth stunting. The hemodynamic effects on fetal development resulted in abnormal cardiovascular circulation and myocardial weakness. After inhibiting the Ca2+ transmembrane, the liver of zebrafish larvae also displayed an ectopic and deficient spatial location. Additionally, the results of the RNA-seq analysis revealed the detailed gene expression profiles and metabolic responses to bepridil treatment in zebrafish embryonic development. Taken together, our study provides an important evaluation of antiarrhythmic agents for clinical use in prenatal heart patients.


Assuntos
Bepridil , Peixe-Zebra , Animais , Ratos , Bepridil/metabolismo , Bepridil/farmacologia , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
18.
New Phytol ; 239(1): 364-373, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36967583

RESUMO

Tendril is a morphological innovation during plant evolution, which provides the plants to obtain climbing ability. However, the tendril morphogenesis is poorly understood. A novel tendril morphogenesis defective mutant (tmd1) was identified in cucumber. The apical part of tendril was replaced by a leaf blade in tmd1 mutant, and it lost the climbing ability. Map-based cloning, qPCR detection, bioinformatic analysis, yeast one-hybrid assay, electrophoretic mobility shift assay, and luciferase assay were used to explore the molecular mechanism of CsaTMD1 in regulating tendril morphogenesis. CsaUFO was the candidate causal gene, and a fragment deletion within promoter impaired CsaUFO expression in tmd1 mutant. A conserved motif 1, which harbored two putative TCP transcription factor binding sites, was located within this deleted fragment. CsaTEN directly bound the motif 1 and positively regulated CsaUFO, and mutation in motif 1 removed this regulation. Our work shows a CsaTEN-CsaUFO module in regulating tendril morphogenesis, indicating that evolution of tendril in cucumber due to simply drive of CsaUFO by CsaTEN in tendril. Additionally, the conserved motif 1 provides a strategy for engineering tendril-less Cucurbitaceae crops.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Mutação/genética , Morfogênese , Regulação da Expressão Gênica de Plantas
19.
J Med Virol ; 95(7): e28899, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37401337

RESUMO

To analyze changes in the detection of parainfluenza virus (PIV) in children hospitalized with acute respiratory tract infection (ARTI) during 2014-2022 in Hubei Province, and explore the impact of the universal two-child policy and the public health measures against COVID-19 epidemic on the prevalence of PIV in China. The study was conducted at the Maternal and Child Health Hospital of Hubei Province. Children aged <18 years with ARTI admitted from January 2014 to June 2022 were enrolled. The infection of PIV was confirmed by the direct immunofluorescence method in nasopharyngeal specimens. Adjusted logistic regression models were used to analyze the influence of the universal two-child policy implementation and public health measurements against COVID-19 on PIV detection. Totally 75 128 inpatients meeting the criteria were enrolled in this study from January 2014 to June 2022 with an overall PIV positive rate of 5.5%. The epidemic seasons of PIV prevalence lagged substantially in 2020. A statistically significant higher positive rate of PIV was observed in 2017-2019 compared to that in 2014-2015 (6.12% vs 2.89%, risk ratio = 2.12, p < 0.001) after the implementation of the universal two-child policy in 2016. A steep decline occurred in PIV positive rate during the COVID-19 epidemic in 2020 (0.92% vs 6.92%, p < 0.001) and it rebounded during the regular epidemic prevention and control period in 2021-2022 (6.35%, p = 0.104). In Hubei Province, the implementation of the universal two-child policy might have led to an increase of PIV prevalence, and public health measures during the COVID-19 epidemic might have influenced the fluctuation in PIV detection since 2020.


Assuntos
COVID-19 , Infecções por Paramyxoviridae , Infecções Respiratórias , Humanos , Criança , Lactente , Criança Hospitalizada , Pandemias , COVID-19/epidemiologia , Infecções Respiratórias/epidemiologia , China/epidemiologia , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 2 Humana , Infecções por Paramyxoviridae/epidemiologia
20.
Clin Genet ; 103(4): 413-423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537221

RESUMO

The fimbrin protein family contains a variety of proteins, among which Plastin1 (PLS1) is an important member. According to recent studies, variations in the coding region of the PLS1 gene are associated with the development of deafness. However, the molecular mechanism of deafness caused by PLS1 gene variants remains unknown. Whole-exome sequencing was performed on hearing-impaired family members and hearing family members to identify pathogenic variants, followed by Sanger sequencing. A minigene assay was conducted to investigate the effect of the variant on PLS1 mRNA splicing. The pathogenicity of the variant was further investigated in zebrafish. RNA-sequencing (RNA-seq) was performed to analyze the dysregulation of downstream signaling pathways caused by knockdown of PLS1 expression. We identified a novel variant, PLS1 c.981+1G>A, in a large Chinese family with hearing loss and showed that the variant is responsible for the occurrence of hearing loss by inducing exon 8 skipping. The variant caused abnormal inner ear phenotypes, characterized by decreases in the mean otolith distance, anterior otolith diameter, posterior otolith diameter, cochlear diameter, and swimming speed and distance in zebrafish. Furthermore, silencing PLS1 expression significantly upregulated the expression of genes in the PI3K-Akt signaling pathway, including Col6a3, Spp1, Itgb3 and hepatocyte growth factor (Hgf). PLS1 c.981+1G>A is a novel pathogenic variant causing hearing loss by inducing exon 8 skipping. Upregulation of the expression of genes in the PI3K-Akt signaling pathway plays an important role in the pathogenesis caused by variants in the PLS1 gene.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Humanos , Peixe-Zebra/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Perda Auditiva Neurossensorial/genética , Surdez/genética , Perda Auditiva/genética , Linhagem , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA