RESUMO
We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.
Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Proteogenômica/métodos , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Genômica/métodos , Glicólise , Humanos , Instabilidade de Microssatélites , Mutação , Fosforilação , Estudos Prospectivos , Proteômica/métodos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismoRESUMO
Using millions of observations compiled from the public administrative data of Taiwan, we find a surprising gender inequity in terms of real estate: Men own more land than women, and the annual rate of return (ROR) of men's land outperform women's by almost 1% per year. The latter finding of gender-based ROR difference is in sharp contrast to prior evidence that women outperform men in security investment, and also suggests a quantity-and-quality double jeopardy in female land ownership which, given the heavy weight of real estate in individual wealth, has important implications for wealth inequality among men and women. Our statistical analyses suggest that such a gender-based difference in land ROR cannot be attributed to individual-level factors such as liquidity preferences, risk attitudes, investment experience, and behavioral biases, as described in the literature. Rather, we hypothesize parental gender bias-a phenomenon that is still prevalent today-to be the key macrolevel factor. To test our hypothesis, we partition our observations into two groups: an experimental group in which parents can exercise gender discretion, and a control group in which parents cannot exercise such discretion. Our empirical evidence shows that the gender difference with respect to land ROR only exists in the experimental group. For many societies with long-lasting patriarchal traditions, our analysis provides a perspective to help explain gender differences in wealth distribution and social mobility.
Assuntos
Propriedade , Sexismo , Humanos , Feminino , Masculino , Fatores Sexuais , Homens , Investimentos em SaúdeRESUMO
Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-ß (Aß) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aß and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aß plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aß and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aß predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aß-positive females presented higher CSF p-tau181 concentrations compared with Aß-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aß-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aß and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aß in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aß plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.
Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Doença de Alzheimer/patologia , Fosforilação , Encéfalo/patologia , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Biomarcadores/metabolismoRESUMO
Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.
Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Proteoma/genética , Proteoma/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Linhagem Celular TumoralRESUMO
The development of novel catalysts for the rapid detoxification of sulfur mustard holds paramount importance in the field of military defense. In this work, titanium dioxide-phosphomolybdic acid sub-1 nm nanobelts (TiO2/PMA SNBs) are employed as effective catalysts for the ultra-fast degradation of mustard gas simulants (2-chloroethyl ethyl sulfide, CEES) with 100% selectivity and a half-life (t1/2, time required for 50% conversion) as short as 12 s, which is the fastest time to the best of the knowledge. Even in dark conditions, this material can still achieve over 90% conversion within 5 min. A mechanism study reveals that the rapid generation rate of 1O2 and O2 â¢- in the presence of TiO2/PMA SNBs and H2O2 plays a crucial role in facilitating the efficient oxidation of CEES. A filter layer of a gas mask loaded with TiO2/PMA SNBs and H2O2/polyvinylpyrrolidone cross-linked complex (PHP) is constructed, which demonstrates remarkable stability and exhibits exceptional efficacy in the detoxification of CEES in the presence of a small amount of water. This innovation offers great potential for enhancing personal protective equipment in practical applications.
RESUMO
BACKGROUND AND PURPOSE: This study was undertaken to compare the performance of plasma p-tau181 with that of [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in the identification of early biological Alzheimer disease (AD). METHODS: We included 533 cognitively impaired participants from the Alzheimer's Disease Neuroimaging Initiative. Participants underwent PET scans, biofluid collection, and cognitive tests. Receiver operating characteristic analyses were used to determine the diagnostic accuracy of plasma p-tau181 and [18F]FDG-PET using clinical diagnosis and core AD biomarkers ([18F]florbetapir-PET and cerebrospinal fluid [CSF] p-tau181) as reference standards. Differences in the diagnostic accuracy between plasma p-tau181 and [18F]FDG-PET were determined by bootstrap-based tests. Correlations of [18F]FDG-PET and plasma p-tau181 with CSF p-tau181, amyloid ß (Aß) PET, and cognitive performance were evaluated to compare associations between measurements. RESULTS: We observed that both plasma p-tau181 and [18F]FDG-PET identified individuals with positive AD biomarkers in CSF or on Aß-PET. In the MCI group, plasma p-tau181 outperformed [18F]FDG-PET in identifying AD measured by CSF (p = 0.0007) and by Aß-PET (p = 0.001). We also observed that both plasma p-tau181 and [18F]FDG-PET metabolism were associated with core AD biomarkers. However, [18F]FDG-PET uptake was more closely associated with cognitive outcomes (Montreal Cognitive Assessment, Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and logical memory delayed recall, p < 0.001) than plasma p-tau181. CONCLUSIONS: Overall, although both plasma p-tau181 and [18F]FDG-PET were associated with core AD biomarkers, plasma p-tau181 outperformed [18F]FDG-PET in identifying individuals with early AD pathophysiology. Taken together, our study suggests that plasma p-tau181 may aid in detecting individuals with underlying early AD.
RESUMO
INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95% = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.
Assuntos
Doença de Alzheimer , Humanos , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Biomarcadores , Tomografia por Emissão de PósitronsRESUMO
PURPOSE OF REVIEW: The purpose is to review the latest advances of brain imaging for the diagnosis of Alzheimer disease (AD). RECENT FINDINGS: Brain imaging techniques provide valuable and complementary information to support the diagnosis of Alzheimer disease in clinical and research settings. The recent FDA accelerated approvals of aducanumab, lecanemab and donanemab made amyloid-PET critical in helping determine the optimal window for anti-amyloid therapeutic interventions. Tau-PET, on the other hand, is considered of key importance for the tracking of disease progression and for monitoring therapeutic interventions in clinical trials. PET imaging for microglial activation, astrocyte reactivity and synaptic degeneration are still new techniques only used in the research field, and more studies are needed to validate their use in the clinical diagnosis of AD. Finally, artificial intelligence has opened new prospective in the early detection of AD using MRI modalities. SUMMARY: Brain imaging techniques using PET improve our understanding of the different AD-related pathologies and their relationship with each other along the course of disease. With more robust validation, machine learning and deep learning algorithms could be integrated with neuroimaging modalities to serve as valuable tools for clinicians to make early diagnosis and prognosis of AD.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Inteligência Artificial , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , NeuroimagemRESUMO
INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.
Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Gliose , Proteínas tau/metabolismo , Proteínas 14-3-3RESUMO
PoDPBT, an O-benzoyltransferase belonging to the BAHD family, can catalyze the benzoylation of 8-debenzoylpaeoniflorin to paeoniflorin. PoDPBT is the first enzyme demonstrated to be involved in the modification stage of paeoniflorin biosynthesis. DFGGG, a new DFGWG-like motif, was revealed in the BAHD family. The transcriptome database provides a resource for further investigation of other enzyme genes involved in paeoniflorin biosynthesis.
Assuntos
Paeonia , Paeonia/genética , Aciltransferases/genética , Monoterpenos , CatáliseRESUMO
Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-ß (Aß) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aß ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aß-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aß-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aß and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aß and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/patologia , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/líquido cefalorraquidianoRESUMO
Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.
Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Mitofagia , Autofagia , Mitocôndrias/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismoRESUMO
There is growing evidence that extracellular vesicles (EVs) play a functional role in tissue repair and anti-aging by transferring the contents of donor cells to recipient cells. We hypothesized that Dauer (C. elegans), known as "ageless" nematodes, can also secrete extracellular vesicles and influence the lifespan of C. elegans. Here, we isolated EVs of dauer larvae (dauer EVs). Dauer EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis (NTA), and Western blot analysis. Wild-type C. elegans were fed in the presence or absence of dauer EVs and tested for a range of phenotypes, including longevity, mobility and reproductive capacity. Results showed that dauer EVs increased the average lifespan of nematodes by 15.74%, improved mobility, slowed age-related pigmentation as well as body length, and reduced the accumulation of reactive oxygen species and lipids, while not impairing nematode reproductive capacity. These findings suggest that dauer EVs can extend the lifespan of C. elegans as well as the healthy lifespan by reducing ROS accumulation, with potential anti-aging capacity.
Assuntos
Proteínas de Caenorhabditis elegans , Vesículas Extracelulares , Animais , Caenorhabditis elegans/genética , Larva , Envelhecimento , Proteínas de Caenorhabditis elegans/genética , Longevidade/genéticaRESUMO
Pin1 is a peptidyl-prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II (Pol II) through interaction with the C-terminal domain (CTD) of Rpb1, the largest subunit of Pol II. We demonstrated that this function is important for cellular response to oxidative stress in the fission yeast Schizosaccharomyces pombe. In response to oxidative stress, the Atf1 transcription factor targets Sty1, the mitogen-activated protein kinase (MAPK), to specific stress-responsive promoters. Anchored Sty1 recruits Pol II through direct association with Rpb1-CTD and phosphorylates the reiterated heptad sequence at Serine 5. Pin1 binds phosphorylated CTD to promote dissociation of Sty1 from it, and directly recruits Ssu72 phosphatase to facilitate dephosphorylation of CTD for transcription elongation. In the absence of Pin1, the association of Sty1-Atf1 with Rpb1 persists on stress-responsive promoters failed to generate transcripts of the corresponding genes effectively. The identified characteristic features of the fission yeast Pin1 are conserved in humans. We demonstrated that elevated Pin1 level in cancer cells might help to sustain survival under oxidative stress generated from their altered metabolic pathways. Together, these results suggest a conserved function of Pin1 in cellular response to oxidative stress among eukaryotic cells that might have clinical implication.
Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/fisiologia , Estresse Oxidativo/genética , Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Imunoprecipitação da Cromatina , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Transcrição GênicaRESUMO
INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed. METHODS: We assessed the diagnostic performance of p-tau181 , p-tau217 , and p-tau231 in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity. RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau181 (AUC = 76%) and p-tau231 (AUC = 82%) assessments performed inferior to CSF p-tau181 (AUC = 87%) and p-tau231 (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau217 (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity. DISCUSSION: Plasma and CSF p-tau217 had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau217 may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD. HIGHLIGHTS: p-tau217 in plasma performed equivalent to p-tau217 in CSF for the diagnosis of AD, suggesting the increased accessibility of plasma p-tau217 is not offset by lower accuracy. p-tau biomarkers in plasma had lower mean fold-changes between amyloid-PET negative and positive groups than p-tau biomarkers in CSF. CSF p-tau biomarkers had greater effect sizes than plasma p-tau biomarkers when differentiating between amyloid-PET positive and negative groups. Plasma p-tau181 and plasma p-tau231 performed worse than p-tau181 and p-tau231 in CSF for AD diagnosis.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Punção Espinal , Proteínas Amiloidogênicas , Plasma , Biomarcadores , Proteínas tau , Peptídeos beta-AmiloidesRESUMO
The therapeutic effect of CAR-T is often accompanied by sCRS, which is the main obstacle to the promotion of CAR-T therapy. The JAK1/2 inhibitor ruxolitinib has recently been confirmed as clinically effective in maintaining control over sCRS, however, its mechanism remains unclear. In this study, we firstly revealed that ruxolitinib significantly inhibited the proliferation of CAR-T cells without damaging viability, and induced an efficacy-favored differentiation phenotype. Second, ruxolitinib reduced the level of cytokine release not only from CAR-T cells, but also from other cells in the immune system. Third, the cytolytic activity of CAR-T cells was restored once the ruxolitinib was removed; however, the cytokines released from the CAR-T cells maintained an inhibited state to some degree. Finally, ruxolitinib significantly reduced the proliferation rate of CAR-T cells in vivo without affecting the therapeutic efficacy after withdrawal at the appropriate dose. We demonstrated pre-clinically that ruxolitinib interferes with both CAR-T cells and the other immune cells that play an important role in triggering sCRS reactions. This work provides useful and important scientific data for clinicians on the question of whether ruxolitinib has an effect on CAR-T cell function loss causing CAR-T treatment failure when applied in the treatment of sCRS, the answer to which is of great clinical significance.
Assuntos
Proliferação de Células/efeitos dos fármacos , Síndrome da Liberação de Citocina/prevenção & controle , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/efeitos dos fármacos , Animais , Linfoma de Burkitt/complicações , Linfoma de Burkitt/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Síndrome da Liberação de Citocina/complicações , Humanos , Imunoterapia Adotiva/métodos , Inibidores de Janus Quinases/farmacologia , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
BACKGROUND AND PURPOSE: Abnormal mitochondrial metabolism has been described in the Alzheimer's disease (AD) brain. However, the relationship between AD pathophysiology and key mitochondrial processes remains elusive. The purpose of this study was to investigate whether mitochondrial complex I dysfunction is associated with amyloid aggregation or glucose metabolism and brain atrophy in patients with mild AD using positron emission tomography (PET). METHODS: Amyloid- and tau-positive symptomatic AD patients with clinical dementia rating 0.5 or 1 (N = 30; mean age ± standard deviation: 71.8 ± 7.6 years) underwent magnetic resonance imaging and PET scans with [18 F]2-tert-butyl-4-chloro-5-2H-pyridazin-3-one (BCPP-EF), [11 C]Pittsburgh Compound-B (PiB) and [18 F]fluorodeoxyglucose (FDG) to assess brain atrophy, mitochondrial complex I dysfunction, amyloid deposition, and glucose metabolism, respectively. Local cortical associations among these biomarkers and gray matter volume were evaluated with voxel-based regressions models. RESULTS: [18 F]BCPP-EF standardized uptake value ratio (SUVR) was positively correlated with [18 F]FDG SUVR in the widespread brain area, while its associations with gray matter volume were restricted to the parahippocampal gyrus. Reductions in [18 F]BCPP-EF SUVR were associated with domain-specific cognitive performance. We did not observe regional associations between mitochondrial dysfunction and amyloid burden. CONCLUSIONS: In symptomatic cases, although mitochondrial complex I reduction is linked to a wide range of downstream neurodegenerative processes such as hypometabolism, atrophy, and cognitive decline, a link to amyloid was not observable. The data presented here support [18 F]BCPP-EF as an excellent imaging tool to investigate mitochondrial dysfunction in AD.
Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Compostos de Anilina , Atrofia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodosRESUMO
Our previous findings have shown that the chlorophyllides composites have anticancer activities to breast cancer cell lines (MCF-7 and MDA-MB-231). In the present study, microarray gene expression profiling was utilized to investigate the chlorophyllides anticancer mechanism on the breast cancer cells lines. Results showed that chlorophyllides composites induced upregulation of 43 and 56 differentially expressed genes (DEG) in MCF-7 and MDA-MB-231 cells, respectively. In both cell lines, chlorophyllides composites modulated the expression of annexin A4 (ANXA4), chemokine C-C motif receptor 1 (CCR1), stromal interaction molecule 2 (STIM2), ethanolamine kinase 1 (ETNK1) and member of RAS oncogene family (RAP2B). Further, the KEGG annotation revealed that chlorophyllides composites modulated DEGs that are associated with the endocrine system in MCF-7 cells and with the nervous system in MDA-MB-231 cells, respectively. The expression levels of 9 genes were validated by quantitative reverse transcription PCR (RT-qPCR). The expression of CCR1, STIM2, ETNK1, MAGl1 and TOP2A were upregulated in both chlorophyllides composites treated-MCF-7 and MDA-MB-231 cells. The different expression of NLRC5, SLC7A7 and PKN1 provided valuable information for future investigation and development of novel cancer therapy.
Assuntos
Neoplasias da Mama , Clorofilídeos , Sistema y+L de Transporte de Aminoácidos , Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células MCF-7 , Proteínas rap de Ligação ao GTPRESUMO
Exosomes are a promising noninvasive tumor biomarker for cancer diagnosis and classification. However, efficient capture and precise analysis of exosomes in complex biological samples remain challenging. Here, sensitive profiling of exosomes with an integrated separation-detection strategy of 37 min is performed based on boronic acid-directed coupling immunoaffinity. The modification of g-C3N4 nanosheets with boronic acid (BCNNS) contributes to antibody binding under physiological conditions, which is accompanied by fluorescence enhancement. When exosomes are captured by an antibody equipped with BCNNS, a decrease in fluorescence can be induced; moreover, using the dispersion property of BCNNS, the exosomes can be separated by a simple centrifugation step. The protocol shows a favorable sensitivity with a detection limit of 2484 particles/mL. By changing only the fused antibody, exosome phenotype information profiling can be achieved, and exosomes derived from four different cell lines (HeLa, HepG2, MCF-7, and MCF-10A) can be successfully distinguished. More significantly, the positive prediction accuracy results reach 100% for serum samples from different individuals and have the advantage of multiple parameters; thus, the method has great potential in noninvasive diagnosis and point-of-care testing.
Assuntos
Exossomos , Biomarcadores Tumorais , Ácidos Borônicos , Células HeLa , HumanosRESUMO
In recent years, α-glucosidase inhibitors (AGIs) have played a significant role in the treatment of type II diabetes (T2D), so it is necessary to develop a reliable and sensitive method to find new AGIs. Herein, we establish a novel method based on fluorescent carbon nitride nanoparticles (CNNPs) for the sensitive detection of the activity of α-glucosidase (α-glu) and the screening of its inhibitors. A CNNP-based fluorescent probe is synthesized from green raw materials, urea and lysine, by a one-pot method. In the presence of α-glu, the substrate 4-nitrophenyl-α-d-glucopyranoside (pNPG) is hydrolyzed to generate 4-nitrophenol (pNP), leading to the fluorescence (FL) quenching of CNNPs due to the inner filter effect (IFE). On the other hand, the activity of α-glu is inhibited after the addition of AGIs, which turns on the FL of CNNPs. In this way, the detection of α-glu activity and the screening of AGIs are achieved. The linear range is 1.25-10.00 U L-1 with a limit of detection as low as 0.17 U L-1 and the IC50 values of two typical inhibitors (gallic acid and acarbose) are 813 µM and 465 µM, respectively. The CNNP probe is further applied for the determination of α-glu activity in human serum samples with satisfactory results.