Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 42(5): 2207-2233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36146929

RESUMO

Safety issues caused by pharmaceuticals have frequently occurred worldwide, posing a tremendous threat to human health. As an essential part of drug development, the toxicological analysis and safety evaluation is of great significance. In addition, the risk of pharmaceuticals accumulation in the environment and the monitoring of the toxicity from natural medicines have also received ongoing concerns. Due to a lack of spatial distribution information provided by common analytical methods, analyses that provide spatial dimensions could serve as complementary safety evaluation methods for better prediction and evaluation of drug toxicity. With advances in technical solutions and software algorithms, mass spectrometry imaging (MSI) has received increasing attention as a popular analytical tool that enables the simultaneous implementation of qualitative, quantitative, and localization without complex sample pretreatment and labeling steps. In recent years, MSI has become more attractive, powerful, and sensitive and has been applied in several scientific fields that can meet the safety assessment requirements. This review aims to cover a detailed summary of the various MSI technologies utilized in the biomedical and pharmaceutical area, including technical principles, advantages, current status, and future trends. Representative applications and developments in the safety-related issues of different pharmaceuticals and natural medicines are also described to provide a reference for pharmaceutical research, improve rational clinical medicine use, and ensure public safety.

2.
Microb Cell Fact ; 23(1): 114, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641799

RESUMO

BACKGROUND: Isoquercitrin (quercetin-3-O-ß-D-glucopyranoside) has exhibited promising therapeutic potentials as cardioprotective, anti-diabetic, anti-cancer, and anti-viral agents. However, its structural complexity and limited natural abundance make both bulk chemical synthesis and extraction from medical plants difficult. Microbial biotransformation through heterologous expression of glycosyltransferases offers a safe and sustainable route for its production. Despite several attempts reported in microbial hosts, the current production levels of isoquercitrin still lag behind industrial standards. RESULTS: Herein, the heterologous expression of glycosyltransferase UGT78D2 gene in Bacillus subtilis 168 and reconstruction of UDP-glucose (UDP-Glc) synthesis pathway led to the synthesis of isoquercitrin from quercetin with titers of 0.37 g/L and 0.42 g/L, respectively. Subsequently, the quercetin catabolism blocked by disruption of a quercetin dioxygenase, three ring-cleavage dioxygenases, and seven oxidoreductases increased the isoquercitrin titer to 1.64 g/L. And the hydrolysis of isoquercitrin was eliminated by three ß-glucosidase genes disruption, thereby affording 3.58 g/L isoquercitrin. Furthermore, UDP-Glc pool boosted by pgi (encoding glucose-6-phosphate isomerase) disruption increased the isoquercitrin titer to 10.6 g/L with the yield on quercetin of 72% and to 35.6 g/L with the yield on quercetin of 77.2% in a 1.3-L fermentor. CONCLUSION: The engineered B. subtilis strain developed here holds great potential for initiating the sustainable and large-scale industrial production of isoquercitrin. The strategies proposed in this study provides a reference to improve the production of other flavonoid glycosides by engineered B. subtilis cell factories.


Assuntos
Engenharia Metabólica , Quercetina , Quercetina/análogos & derivados , Quercetina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Difosfato de Uridina/metabolismo
3.
Rapid Commun Mass Spectrom ; 38(16): e9780, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38887892

RESUMO

BACKGROUND: Natural medicines present a considerable analytical challenge due to their diverse botanical origins and complex multi-species composition. This inherent complexity complicates their rapid identification and analysis. Tangerine peel, a product of the Citrus species from the Rutaceae family, is widely used both as a culinary ingredient and in traditional Chinese medicine. It is classified into two primary types in China: Citri Reticulatae Pericarpium (CP) and Citri Reticulatae Pericarpium Viride (QP), differentiated by harvest time. A notable price disparity exists between CP and another variety, Citri reticulatae "Chachi" (GCP), with differences being based on the original variety. METHODS: This study introduces an innovative method using portable miniature mass spectrometry for swift on-site analysis of QP, CP, and GCP, requiring less than a minute per sample. And combined with machine learning to differentiate the three types on site, the method was used to try to distinguish GCP from different storage years. RESULTS: This novel method using portable miniature mass spectrometry for swift on-site analysis of tangerine peels enabled the characterization of 22 compounds in less than one minute per sample. The method simplifies sample processing and integrates machine learning to distinguish between the CP, QP, and GCP varieties. Moreover, a multiple-perceptron neural network model is further employed to specifically differentiate between CP and GCP, addressing the significant price gap between them. CONCLUSIONS: The entire analytical time of the method is about 1 minute, and samples can be analyzed on site, greatly reducing the cost of testing. Besides, this approach is versatile, operates independently of location and environmental conditions, and offers a valuable tool for assessing the quality of natural medicines.


Assuntos
Citrus , Aprendizado de Máquina , Espectrometria de Massas , Citrus/química , Citrus/classificação , Espectrometria de Massas/métodos
4.
Analyst ; 149(14): 3857-3864, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855898

RESUMO

Renowned for their nutritional benefits, citrus fruits are harvested at various stages in China for functional food production. This study introduces an innovative analytical method, DART-MS, enabling direct qualitative analysis of citrus samples without the need for preprocessing. Simultaneously, the combination of chemometrics can be applied to distinguish between three different citrus samples: Citri Reticulatae Pericarpium, Citri Reticulatae Pericarpium Viride, and Citri Reticulatae "Chachi". Notably, given the international regulatory concerns surrounding synephrine, a precise quantitative analysis method for synephrine was developed. The limit of detection (LOD) and the limit of quantification (LOQ) were 39 ng mL-1 and 156 ng mL-1, respectively. The recovery rates obtained varied from 98.46% to 100.71%. Furthermore, the intra-day and inter-day precision demonstrated robust consistency, with values spanning 5.0-6.1% and 5.03-6.08%, respectively, offering quicker results compared to those from HPLC-MS, promising a safer assessment of herbal and food products.


Assuntos
Citrus , Limite de Detecção , Espectrometria de Massas , Citrus/química , Espectrometria de Massas/métodos , Sinefrina/análise , Quimiometria/métodos , Cromatografia Líquida de Alta Pressão/métodos
5.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38108219

RESUMO

Wearable heaters are essential for people living in cold regions, but creating heaters that are low-cost, lightweight, and high air permeability poses challenges. In this study, we developed a wearable heater using carbon nanotube/water polyurethane (CNT/WPU) nanocomposite fibers that achieve high extension rate and conductivity. We produced low-cost and mass-produced fibers using the wet spinning. With heat treatment, we increased the elongation rate of the fibers to 1893.8% and decreased the resistivity to 0.07 Ω*m. then wove the fibers into a heating fabric using warp knitting, that resistance is 493 Ω. Achieved a uniform temperature of 58 °C at voltage of 36 V, with a thermal stability fluctuation of -5.0 °C to +6.3 °C when bent from 0° to 360°. Our results show that wearable heaters have excellent flexibility and stretchability, due to nanocomposite fibers and special braided structure, which offer a novel idea for wearable heaters.

6.
Acta Pharmacol Sin ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009651

RESUMO

Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFßR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFßR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-ß-Smad2/3 signaling pathway through directly binding to TGFßR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.

7.
Acta Pharmacol Sin ; 45(7): 1451-1465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491161

RESUMO

Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 µM) promoted wound healing and reduced cell apoptosis. NGR1 (100 µM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/ß-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/ß-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/ß-Catenin signaling pathway.


Assuntos
Colite , Ginsenosídeos , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Via de Sinalização Wnt , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Humanos
8.
Appl Microbiol Biotechnol ; 108(1): 282, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573330

RESUMO

Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-ß-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-ß-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.


Assuntos
Ginsenosídeos , Ácido Oleanólico/análogos & derivados , Paenibacillus , Saponinas , Glicosídeo Hidrolases/genética , Simulação de Acoplamento Molecular , Escherichia coli/genética , Ésteres
9.
Arch Toxicol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703205

RESUMO

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.

10.
J Ultrasound Med ; 43(2): 273-280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846610

RESUMO

OBJECTIVE: To evaluate the diagnostic value of musculoskeletal ultrasound measurements of subacromial bursa (SAB) thickness, supraspinatus tendon (SUP) thickness, acromiohumeral distance (AHD), and SUP-to-AHD ratio (AHD%) in patients with shoulder impingement syndrome (SIS). METHODS: This was a prospective cross-sectional observational study. Thirty patients with SIS (60 shoulders) admitted between January 2019 and January 2020 were enrolled. The SUP thickness, SAB thickness, AHD, and AHD% (calculated as AHD% = [(SUP / AHD) × 100%]) were measured in 60 shoulders using musculoskeletal ultrasound. RESULTS: The affected shoulder displayed thicker SUP and SAB (t = 7.838), narrower AHD (t = 2.324), and larger AHD% (t = 6.875) than the unaffected shoulder (P < .05). The SUP thickness showed a linear positive correlation with AHD (r = .503) and AHD% (r = .792) in the affected shoulder (P < .05). On receiver operating characteristic analysis, AHD*AHD% showed the best diagnostic performance in both measurements (area under the curve: 0.877). CONCLUSION: This study revealed that SIS symptoms may be related to a larger AHD% with SUP thickening. As diagnostic criteria, the cut-off values of AHD% (65.6%) and AHD*AHD% (0.504) have good sensitivity and specificity and can help improve the differential diagnosis of patients with SIS.


Assuntos
Síndrome de Colisão do Ombro , Humanos , Síndrome de Colisão do Ombro/diagnóstico por imagem , Estudos Transversais , Estudos Prospectivos , Ombro/diagnóstico por imagem , Manguito Rotador/diagnóstico por imagem , Ultrassonografia
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526687

RESUMO

Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Gastrectomia/métodos , Obesidade Mórbida/cirurgia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso/genética
12.
Zhongguo Zhong Yao Za Zhi ; 49(4): 858-867, 2024 Feb.
Artigo em Zh | MEDLINE | ID: mdl-38621893

RESUMO

Benign prostatic hyperplasia(BPH) is a common disease of the male urinary system, and its incidence rate in China is increasing. However, the mechanism underlying the pathogenesis of BPH remains unclear. Some studies demonstrated that the incidence of BPH was related to the change in the levels of steroid hormones. Too high content of dihydrotestosterone(DHT) in the body may cause BPH and other related diseases. Testosterone(T) is converted to DHT by 5α-reductase(SRD5A). By inhibiting the activity of this enzyme, the production of DHT can be reduced, and then the incidence of BPH can be lowered. Therefore, it has drawn great attention to screen and discover safer and more effective 5α-reductase inhibitors from natural medicines to treat prostatic hyperplasia without affecting the physiological function of men. This review summarizes the characteristics and tissue distribution of 5α-reductase, the discovery of 5α-reductase inhibitors in traditional Chinese medicine and natural medicines, 5α-reductase inhibitors commonly used in clinical practice and their side effects, as well as the animal models of prostatic hyperplasia and common detection indicators, aiming to provide a reference for more in-depth understanding and research about BPH and development of drugs.


Assuntos
Inibidores de 5-alfa Redutase , Hiperplasia Prostática , Animais , Humanos , Masculino , Inibidores de 5-alfa Redutase/uso terapêutico , Colestenona 5 alfa-Redutase , Di-Hidrotestosterona , Hiperplasia Prostática/tratamento farmacológico , Testosterona
13.
Rapid Commun Mass Spectrom ; 37(24): e9637, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37953545

RESUMO

BACKGROUND: The renin-angiotensin system produces a series of biologically active angiotensin (Ang) peptides. These Ang peptides are the major regulators of blood pressure and Na homeostasis, and play a critical role in maintaining cardiovascular and fluid homeostasis. The concentration of Ang peptides in the body is at trace levels, making their detection and quantification a challenge. In this study, a rapid and sensitive analytical method using mass spectrometry coupled with ultrahigh-performance liquid chromatography (UHPLC/MS) was developed to simultaneously quantify 14 Ang peptides. METHODS: UHPLC/MS was employed to quantify 14 Ang peptides in mouse and human plasma. An HSS T3 column (2.1 × 100 mm, 1.8 µm) with an HSS T3 precolumn and triple-quadrupole mass spectrometer combined with an electrospray ionization source were utilized. Sample pretreatment involved a one-step protein precipitation using methanol. The total analysis time was within 7.5 min and the target peptides were detected in positive ion mode and quantified by selected reaction monitoring mode. RESULTS: The method was validated for linearity, detection and quantification limits, precision, stability, recovery and matrix effect. The limits of detection of Ang II, Ang III, Ang-(1-7), Ang-(2-7), Ang-(3-7), Ang-(1-9), bradykinin, Asn1 and Val5 -Ang II are all less than 1 pg mL-1 , indicating high sensitivity. The intra-day and inter-day precision was within 15%, and the accuracy was between 85% and 115%. Meanwhile, the sample and reference solution were stable within 48 h, and the recovery and matrix effect met the quantitative requirements. CONCLUSIONS: The method is currently reported to allow the largest number of Ang peptide species to be detected at one time. In addition, the proposed method offers a fast and reliable approach for comprehensive analysis of Ang metabolism in biological samples, facilitating research on the physiological and pathological states of cardiovascular, kidney and respiratory diseases.


Assuntos
Sistema Renina-Angiotensina , Espectrometria de Massas em Tandem , Humanos , Camundongos , Animais , Sistema Renina-Angiotensina/fisiologia , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Peptídeos , Rim , Cromatografia Líquida de Alta Pressão/métodos
14.
Cell Biol Toxicol ; 39(6): 2685-2707, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36809385

RESUMO

Improper use of acetaminophen (APAP) will induce acute liver failure. This study is designed to investigate whether early growth response-1 (EGR1) participated in the promotion on liver repair and regeneration after APAP-induced hepatotoxicity provided by natural compound chlorogenic acid (CGA). APAP induced the nuclear accumulation of EGR1 in hepatocytes regulated by extracellular-regulated protein kinase (ERK)1/2. In Egr1 knockout (KO) mice, the liver damage caused by APAP (300 mg/kg) was more severe than in wild-type (WT) mice. Results of chromatin immunoprecipitation and sequencing (ChIP-Seq) manifested that EGR1 could bind to the promoter region in Becn1, Ccnd1, and Sqstm1 (p62) or the catalytic/modify subunit of glutamate-cysteine ligase (Gclc/Gclm). Autophagy formation and APAP-cysteine adduct (APAP-CYS) clearance were decreased in Egr1 KO mice administered with APAP. The EGR1 deletion reduced hepatic cyclin D1 expression at 6, 12, or 18 h post APAP administration. Meanwhile, the EGR1 deletion also decreased hepatic p62, Gclc and Gclm expression, GCL enzymatic activity, and glutathione (GSH) content and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activation and thus aggravated oxidative liver injury induced by APAP. CGA increased EGR1 nuclear accumulation; enhanced hepatic Ccnd1, p62, Gclc, and Gclm expression; and accelerated the liver regeneration and repair in APAP-intoxicated mice. In conclusion, EGR1 deficiency aggravated liver injury and obviously delayed liver regeneration post APAP-induced hepatotoxicity through inhibiting autophagy, enhancing liver oxidative injury, and retarding cell cycle progression, but CGA promoted the liver regeneration and repair in APAP-intoxicated mice via inducing EGR1 transcriptional activation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Regeneração Hepática , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/patologia , Glutationa/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos Endogâmicos C57BL
15.
J Sep Sci ; 46(2): e2200542, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36409143

RESUMO

Owing to increasing demand for Panax notoginseng-based medicines and health products, establishing a fast, simple, and reliable assay to analyze the chemical differences between its root and rhizome is important. Although previous studies showed that the chemical and biological differences between the root and rhizome of P. notoginseng seem to be small, efforts should be taken to investigate such differences to ensure the safety and efficacy of the products. This work describes a holistic approach that combines characteristic fingerprinting using ultra-high performance liquid chromatography-tandem mass spectrometry parent ion scanning with charged aerosol detection and targeted separation by online heart-cutting two-dimensional liquid chromatography, to identify and evaluate characteristic markers allowing differentiation of the root and rhizome. A total of five potential markers chikusetsusaponin L5 , ginsenoside Rb2 , stipuleanoside R2, malonyl-ginsenoside Rb1 , and malonyl-ginsenoside Rd, were identified and confirmed by comparing chromatographic retention time, the accurate mass of molecular weight, and the fragments of secondary MS with the available reference materials. The results showed that all five markers were 2.8-7 times higher in content in the rhizome than in the root.


Assuntos
Ginsenosídeos , Panax notoginseng , Panax , Saponinas , Ginsenosídeos/química , Panax notoginseng/química , Rizoma/química , Saponinas/análise , Cromatografia Líquida de Alta Pressão , Panax/química
16.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049646

RESUMO

Septic shock is defined as a subset of sepsis, which is associated with a considerably high mortality risk. The caspase-11 non-canonical inflammasome is sensed and activated by intracellular lipopolysaccharide (LPS) leading to pyroptosis, it plays a critical role in septic shock. However, there are few known drugs that can control caspase-11 non-canonical inflammasome activation. We report here that goitrin, an alkaloid from Radix Isatidis, shows protective effects in LPS-induced septic shock and significant inhibitory effect in caspase-11 non-canonical inflammasome pathway. Male C57BL/6J were injected intraperitoneally with LPS (20 mg/kg) to induce experimental septic shock. The results demonstrated that the survival rates of mice pretreated with goitrin or Toll-like receptor 4 (TLR4) inhibitor TKA-242 increased, and LPS-induced hypothermia and lung damage improved by inhibiting inflammatory response. Elucidating the detailed mechanism, we surprisingly found goitrin is really different from TAK-242, it independent of the TLR4 signal activation, but significantly inhibited the activation of caspase-11 non-canonical inflammasome, including cleaved caspase-11 and N-terminal fragment of gasdermin D (GSDMD-NT). Furthermore, with a nonlethal dose of the TLR3 agonist poly(I:C)-primed and subsequently challenged with LPS to induce caspase-11-mediated lethal septic shock, the efficacy of goitrin had been verified. Those results revealed the effect of goitrin in protective against LPS-induced septic shock via inhibiting caspase-11 non-canonical inflammasome, which provided a new therapeutic strategy for clinical treatment of septic shock.


Assuntos
Inflamassomos , Choque Séptico , Masculino , Camundongos , Animais , Inflamassomos/metabolismo , Caspases/metabolismo , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL , Caspases Iniciadoras/metabolismo , Piroptose
17.
AAPS PharmSciTech ; 24(4): 90, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977927

RESUMO

In this work, self-double-emulsifying drug delivery system enteric-coated capsules (PNS-SDE-ECC) were used to enhance the oral bioavailability and anti-inflammatory effects of Panax notoginseng saponins (PNS), which are rapidly biodegradable, poorly membrane permeable, and highly water-soluble compounds. The PNS-SDEDDS formulated by a modified two-step method spontaneously emulsified to W/O/W double emulsions in the outer aqueous solution, which significantly promoted the absorption of PNS in the intestinal tract. The release study revealed that PNS-SDE-ECC exhibited sustained release of PNS within 24 h and the stability study indicated that PNS-SDE-ECC were stable at room temperature for up to 3 months. Furthermore, compared to PNS gastric capsules, the relative bioavailability of NGR1, GRg1, GRe, GRb1, and GRd in PNS-SDE-ECC was increased by 4.83, 10.78, 9.25, 3.58, and 4.63 times, respectively. More importantly, PNS-SDE-ECC significantly reduced OXZ-induced inflammatory damage in the colon by regulating the expression of TNF-α, IL-4, IL-13, and MPO cytokines. Overall, the prepared PNS-SDE-ECC may serve as a viable vehicle for increasing the oral bioavailability of PNS and its anti-inflammatory action on ulcerative colitis.


Assuntos
Panax notoginseng , Saponinas , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/farmacologia
18.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2041-2058, 2023 Apr.
Artigo em Zh | MEDLINE | ID: mdl-37282893

RESUMO

Glechomae Herba, the dried aerial part of Glechoma longituba(Labiatae), has the effects of promoting urination, draining dampness, and relieving stranguria. It has received wide attention in recent years owing to the satisfactory efficacy on lithiasis. Amid the in-depth chemical and pharmacological research, it has been found that Glechomae Herba has antibacterial, anti-inflammatory, antioxidant, antithrombotic, hepatoprotective, cholagogic, antitumor, hypoglycemic, and lipid-lowering effects. The main chemical constituents are volatile oils, flavonoids, terpenoids, phenylpropanoids, and organic acids. This paper summarized the chemical constituents and pharmacological effects of Glechomae Herba. Based on genetic relationship of plants, the characteristics, efficacy, and pharmacokinetics of the chemical constituents, and the potential of these constituents as quality markers(Q-markers), it was summed up that ursolic acid, caffeic acid, rosmarinic acid, luteolin-7-O-diglucuronide, apigenin, apigenin-7-O-diglucuronide, apigetrin, and glechone can be the candidate Q-markers of Glechomae Herba.


Assuntos
Medicamentos de Ervas Chinesas , Lamiaceae , Apigenina , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia
19.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6088-6092, 2023 Nov.
Artigo em Zh | MEDLINE | ID: mdl-38114216

RESUMO

To study the chemical constituents in the non-alkaloid part of stems of Dendrobium nobile. The macroporous adsorption resin, MCI, silica gel, RP-C_(18), and Sephadex LH-20 gel, preparative thin layer chromatography, and preparative high-performance liquid chromatography(HPLC) were used to isolate and purify the compounds. The structures of the compound were determined according to the spectra data, physicochemical properties, and relevant references. A total of 8 compounds were isolated from D. nobile, which were soltorvum F(1), p-hydroxyphenylpropionic acid(2), vanillic acid(3), p-hydroxybenzoic acid(4), N-trans-cinnamic acid acyl-p-hydroxybenzene ethylamine(5),(+)-(1R,2S,3R,4S,5R,6S,9R)-2,11,12-trihydroxypicrotoxane-3(15)-lactone(6), dendronobilin H(7), soltorvum E(8). Compound 1 was a novel compound, named as soltorvum F. Compound 8 was isolated from Dendrobium species for the first time.


Assuntos
Dendrobium , Sesquiterpenos , Dendrobium/química , Estrutura Molecular , Sesquiterpenos de Guaiano , Sesquiterpenos/química
20.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4675-4685, 2023 Sep.
Artigo em Zh | MEDLINE | ID: mdl-37802806

RESUMO

The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.


Assuntos
Berberina , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Humanos , Espectrometria de Massas em Tandem , Berberina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Farmacologia em Rede , Medicamentos de Ervas Chinesas/química , Controle de Qualidade , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA