Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 618, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890562

RESUMO

Cyathus olla, belonging to the genus Cyathus within the order Agaricales, is renowned for its bird's nest-like fruiting bodies and has been utilized in folk medicine. However, its genome remains poorly understood. To investigate genomic diversity within the genus Cyathus and elucidate biosynthetic pathways for medicinal compounds, we generated a high-quality genome assembly of C. olla with fourteen chromosomes. The comparative genome analysis revealed variations in both genomes and specific functional genes within the genus Cyathus. Phylogenomic and gene family variation analyses provided insights into evolutionary divergence, as well as genome expansion and contraction in individual Cyathus species and 36 typical Basidiomycota. Furthermore, analysis of LTR-RT and Ka/Ks revealed apparent whole-genome duplication (WGD) events its genome. Through genome mining and metabolite profiling, we identified the biosynthetic gene cluster (BGC) for cyathane diterpenes from C. olla. Furthermore, we predicted 32 BGCs, containing 41 core genes, involved in other bioactive metabolites. These findings represent a valuable genomic resource that will enhance our understanding of Cyathus species genetic diversity. The genome analysis of C. olla provides insights into the biosynthesis of medicinal compounds and establishes a fundamental basis for future investigations into the genetic basis of chemodiversity in this significant medicinal fungus.


Assuntos
Genoma Fúngico , Família Multigênica , Filogenia , Vias Biossintéticas/genética , Agaricales/genética , Agaricales/metabolismo , Diterpenos/metabolismo , Genômica , Metaboloma
2.
Anal Chem ; 96(23): 9535-9543, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804236

RESUMO

It is the scientific basis of precision medicine to study all of the targets of drugs based on the interaction between drugs and proteins. It is worth paying attention to unknown proteins that interact with drugs to find new targets for the design of new drugs. Herein, we developed a protein profiling strategy based on drug-protein interactions and drug-modified magnetic nanoparticles and took hepatitis C virus (HCV) and its corresponding drug sofosbuvir (SOF) as an example. A SOF-modified magnetic separation medium (Fe3O4@POSS@SOF) was prepared, and a gradient elution strategy was employed and optimized to profile specific proteins interacted with SOF. A series of proteomic analyses were performed to profile proteins based on SOF-protein interactions (SPIs) in the serum of HCV patients to evaluate the specificity of the profiling strategy. As a result, five proteins were profiled with strong SPIs and exhibited high relevance with liver tissue, which were potentially new drug targets. Among them, HSP60 was used to confirm the highly specific interactions between the SOF and its binding proteins by Western blotting analysis. Besides, 124 and 29 differential proteins were profiled by SOF material from three HCV patient serum and pooled 20 HCV patient serum, respectively, by comparing with healthy human serum. In comparison with those profiled by the polyhedral oligomeric silsesquioxane (POSS) material, differential proteins profiled by the SOF material were highly associated with liver diseases through GO analysis and pathway analysis. Furthermore, four common differential proteins profiled by SOF material but not by POSS material were found to be identical and expressed consistently in both pooled serum samples and independent serum samples, which might potentially be biomarkers of HCV infection. Taken together, our study proposes a highly specific protein profiling strategy to display distinctive proteomic profiles, providing a novel idea for drug design and development.


Assuntos
Antivirais , Hepacivirus , Hepatite C , Sofosbuvir , Humanos , Sofosbuvir/uso terapêutico , Hepacivirus/efeitos dos fármacos , Antivirais/sangue , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Hepatite C/sangue , Nanopartículas de Magnetita/química , Proteômica/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise
3.
Anal Chem ; 96(10): 4120-4128, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412037

RESUMO

Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.


Assuntos
DNA Catalítico , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , DNA/química , DNA Catalítico/química , Lógica , Ouro , Computadores Moleculares
4.
Anal Chem ; 96(19): 7353-7359, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690857

RESUMO

Accurate detection of multiple cardiovascular biomarkers is crucial for the timely screening of acute coronary syndrome (ACS) and differential diagnosis from acute aortic syndrome (AAS). Herein, an antibody microarray-based metal-enhanced fluorescence assay (AMMEFA) has been developed to quantitatively detect 7 cardiovascular biomarkers through the formation of a sandwich immunoassay on the poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate)-decorated GNR-modified slide (GNR@P(GMA-HEMA) slide). The AMMEFA exhibits high specificity and sensitivity, the linear ranges span 5 orders of magnitude, and the limits of detection (LODs) of cardiac troponin I (cTnI), heart-type fatty acid binding protein (H-FABP), C-reactive protein (CRP), copeptin, myoglobin, D-Dimer, and N-terminal pro-brain natriuretic peptide (NT-proBNP) reach 0.07, 0.2, 65.7, 0.6, 0.2, 8.3, and 0.3 pg mL-1, respectively. To demonstrate its practicability, the AMMEFA has been applied to quantitatively analyze 7 cardiovascular biomarkers in 140 clinical plasma samples. In addition, the expression levels of cardiovascular biomarkers were analyzed by the least absolute shrinkage and selector operator (LASSO) regression, and the area under receiver operator characteristic curves (AUCs) of healthy donors (HDs), ACS patients, and AAS patients are 0.99, 0.98, and 0.97, respectively.


Assuntos
Biomarcadores , Humanos , Biomarcadores/sangue , Biomarcadores/análise , Análise Serial de Proteínas/métodos , Limite de Detecção , Imunoensaio/métodos , Fluorescência
5.
Anal Chem ; 96(27): 10893-10900, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38922295

RESUMO

The broad applications of ion mobility spectrometry (IMS) demand good sensitivity and resolving power for ion species with different reduced mobilities (K0). In this work, a new Tyndall-Powell gate (TPG) gating method for combining ion enrichment, mobility discrimination reduction, and temporal compression into a single gating process is proposed to improve IMS analysis performance. The two-parallel-grid structure and well-confined gate region of the TPG make it convenient to spatiotemporally vary the electric fields within and around the gate region. Under the new gating method, a potential wave is applied on TPG grid 1 to enrich ions within the ionization region adjacent to the TPG during the gate-closed state; meanwhile, a potential wave is applied on TPG grid 2 to enhance mobility discrimination reduction and temporal compression simultaneously during the gate-open state. For triethyl phosphate (TEP) and dimethyl methylphosphonate mixtures, product ion peaks within K0 of 1.9 to 1.1 cm2/V·s exhibit a 19-fold increase in ion current compared to the traditional TPG gating method, while maintaining a resolving power of 85. The estimated limit of detection for the TEP dimer is lowered from 8 ppb to 135 ppt. The new gating method can be applied to other TPG-based IMS systems to enhance their performance in analyzing complex samples.

6.
Environ Sci Technol ; 58(23): 10140-10148, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38781353

RESUMO

Anammox bacteria performed the reaction of NH4+ and NO with hydrazine synthase to produce N2H4, followed by the decomposition of N2H4 with hydrazine dehydrogenase to generate N2. Ferroheme/ferriheme, which serves as the active center of both hydrazine synthase and hydrazine dehydrogenase, is thought to play a crucial role in the synthesis and decomposition of N2H4 during Anammox due to its high redox activity. However, this has yet to be proven and the exact mechanisms by which ferroheme/ferriheme is involved in the Anammox process remain unclear. In this study, abiotic and biological assays confirmed that ferroheme participated in NH4+ and NO reactions to generate N2H4 and ferriheme, and the produced N2H4 reacted with ferriheme to generate N2 and ferroheme. In other words, the ferroheme/ferriheme cycle drove the continuous reaction between NH4+ and NO. Raman, ultraviolet-visible spectroscopy, and X-ray absorption fine structure spectroscopy confirmed that ferroheme/ferriheme is involved in the synthesis and decomposition of N2H4 via the core FeII/FeIII cycle. The mechanism of ferroheme/ferriheme participation in the synthesis and decomposition of N2H4 was proposed by density functional theory calculations. These findings revealed for the first time the heme electron transfer mechanisms, which are of great significance for deepening the understanding of Anammox.


Assuntos
Hidrazinas , Oxirredução , Hidrazinas/química
7.
Biochem Genet ; 62(2): 1087-1102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37532836

RESUMO

Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.

8.
Anal Chem ; 95(41): 15146-15152, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37733965

RESUMO

The landscape of diagnostic assessments has experienced a paradigm shift driven by the advent of isothermal amplification techniques on point-of-care testing (POCT). The development of compact, portable isothermal amplification devices further emphasizes their transformative influence on diagnostic approaches. However, in prioritizing portability, these devices may exhibit limitations in functionality, rendering them less effective in addressing urgent public health emergencies during sudden pathogen outbreaks. In this paper, an efficient isothermal fluorescence amplification device has been fabricated for the rapid detection of pathogens during public health crises. The device features multichannel capability for simultaneous detection of various targets, integrates with the Internet of Medical Things (IoMT) for remote control and data uploading, and includes a deep learning-based batch processing system for rapid (9.4 ms) and accurate discrimination of pathogen type with excellent accuracy. The device has been successfully employed to simultaneously detect Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) with limits of detection (LODs) of 18 CFU/mL (SA) and 20 CFU/mL (MRSA) within 35 min by multiplex RPA assay and CRISPR/Cas12a-mediated nucleic acid detection assay.

9.
Anal Chem ; 95(5): 2949-2957, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695319

RESUMO

Fluorescence imaging-guided diagnostics is one of the most promising approaches for facile detection of tumors in situ owing to its simple operation and non-invasiveness. As a crucial biomarker for primary ovarian cancers, ß-galactosidase (ß-gal) has been demonstrated to be the significant molecular target for visualization of ovarian tumors. Herein, a membrane-permeable fluorescent chemosensor (namely, LAN-ßgal) was synthesized for ß-gal-specific detection using the d-galactose residue as a specific recognition unit and LAN-OH (ΦF = 0.47) as a fluorophore. After ß-gal was digested, the fluorescence of the initially quenched LAN-ßgal (ΦF < 0.001) was enhanced by up to more than 2000-fold, which exceeded the fluorescence enhancement of other previously reported probes. We also demonstrated that the chemosensor LAN-ßgal could visualize endogenous ß-gal and distinguish ovarian cancer cells from normal ovarian cells. Further, the chemosensor LAN-ßgal was successfully applied to visualize the back tumor-bearing mouse model and peritoneal metastatic ovarian cancer model in vivo. More importantly, through in situ spraying, the proposed chemosensor was successfully employed to assist in the surgical resection of ovarian cancer tumors due to its high tumor-to-normal (T/N) tissue fluorescence ratio of 218. To the best of our knowledge, this is the highest T/N tissue fluorescence ratio ever reported. We believe that the LAN-ßgal chemosensor can be utilized as a new tool for the clinical diagnosis and treatment of ovarian cancer.


Assuntos
Corantes Fluorescentes , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Corantes Fluorescentes/química , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/cirurgia , Microscopia de Fluorescência , Biomarcadores , Modelos Animais de Doenças , beta-Galactosidase/química
10.
Anal Chem ; 95(48): 17808-17817, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972997

RESUMO

The timely detection of diseases and the accurate identification of pathogens require the development of efficient and reliable diagnostic methods. In this study, we have developed a novel specific multivariate probe termed MRTFP (multivariate real-time fluorescent probe) by assembling strand exchange three-way-junction (3WJ) structures. The 3WJ structures were incorporated into a four-angle probe (FP) and a hexagonal probe (HP), to target the multivariate genes of Salmonella. The FP and HP enable single-step and multiplexed detection in RT-LAMP (real-time loop-mediated isothermal amplification) with exceptional sensitivity and specificity. Encouragingly, real food samples contaminated with Salmonella (Salmonella enteritidis and Salmonella typhimurium) can be readily identified and distinguished with a minimum detectable concentration (MDC) of 103 CFU/mL without the need for further culture. The introduction of MRTFP allows for simultaneous detection of dual or three targets in a single tube for LAMP, thereby improving detection efficiency. The MRTFP simplifies the design of robust multivariate probes, exhibits excellent stability, and avoids interference from multiple probe units, offering significant potential for the development of specific probes for efficient and accurate disease detection and pathogen identification.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Salmonella typhimurium , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Salmonella typhimurium/genética , Salmonella enteritidis/genética
11.
Anal Chem ; 95(2): 862-871, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36584310

RESUMO

The wide dynamic range of serum proteome restrained discovery of clinically interested proteins in large cohort studies. Herein, we presented a high-sensitivity, high-throughput, and precise pan-targeted serum proteomic strategy for highly efficient cancer serum proteomic research and biomarker discovery. We constructed a resource of over 2000 cancer-secreted proteins, and the standard MS assays and spectra of at least one synthetic unique peptide per protein were acquired and documented (Cancer Serum Atlas, www.cancerserumatlas.com). Then, the standard peptide-anchored parallel reaction monitoring (SPA-PRM) method was developed with support of the Cancer Serum Atlas, achieving precise quantification of cancer-secreted proteins with high throughput and sensitivity. We directly quantified 325 cancer-related serum proteins in 288 serums of four cancer types (liver, stomach, lung, breast) and controls with the pan-targeted strategy and discovered considerable potential biomarker benefits for early detection of cancer. Finally, a proteomic-based multicancer detection model was built, demonstrating high sensitivity (87.2%) and specificity (100%), with 73.8% localization accuracy for an independent test set. In conclusion, the Cancer Serum Atlas provides a wide range of potential biomarkers that serve as targets and standard assays for systematic and highly efficient serological studies of cancer. The Cancer Serum Atlas-supported pan-targeted proteomic strategy enables highly efficient biomarker discovery and multicancer detection and thus can be a powerful tool for liquid biopsy.


Assuntos
Neoplasias , Proteômica , Humanos , Proteômica/métodos , Biomarcadores/metabolismo , Neoplasias/diagnóstico , Proteínas Sanguíneas , Peptídeos , Proteoma
12.
Anal Chem ; 95(15): 6433-6440, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37026469

RESUMO

Although promising in monitoring low-abundance analytes, most of the DNAzyme walker is only responsive to a specific target. Herein, a universal, ready-to-use platform is developed by coupling nicking-enhanced rolling circle amplification and a self-powered DNAzyme walker (NERSD). It addressed the issues that DNAzyme strands need to be specifically designed for different biosensing system, allowing highly sensitive analysis of various targets with the same DNAzyme walker components. It is also specific owing to target-dependent ligation of the padlock probe and precise cleavage of a substrate by a DNAzyme strand. As typically demonstrated, the strategy has an equivalent capacity with the qRT-PCR kit in distinguishing plasma miR-21 levels of breast cancer patients from normal subjects and is able to differentiate intracellular miR-21 and ATP levels by confocal imaging. The approach characteristic of programmability, flexibility, and generality indicated the potential in all kinds of biosensing and imaging platform.


Assuntos
DNA Catalítico , Diagnóstico por Imagem , MicroRNAs , Humanos , Diagnóstico por Imagem/métodos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico , MicroRNAs/análise
13.
Small ; : e2308397, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072786

RESUMO

Due to the inherent low immunogenicity and immunosuppressive tumor microenvironment (TME) of malignant cancers, the clinical efficacy and application of tumor immunotherapy have been limited. Herein, a bimetallic drug-gene co-loading network (Cu/ZIF-8@U-104@siNFS1-HA) is developed that increased the intracellular labile iron pool (LIP) and enhanced the weakly acidic TME by co-suppressing the dual enzymatic activities of carbonic anhydrase IX (CA IX) and cysteine desulfurylase (NFS1), inducing a safe and efficient initial tumor immunogenic ferroptosis. During this process, Cu2+ is responsively released to deplete glutathione (GSH) and reduce the enzyme activity of glutathione peroxidase 4 (GPX4), achieving the co-inhibition of the three enzymes and further inducing lipid peroxidation (LPO). Additionally, the reactive oxygen species (ROS) storm in target cells promoted the generation of large numbers of double-stranded DNA breaks. The presence of Zn2+ substantially increased the expression of cGAS/STING, which cooperated with ferroptosis to strengthen the immunogenic cell death (ICD) response and remodel the immunosuppressive TME. In brief, Cu/ZIF-8@U-104@siNFS1-HA linked ferroptosis with immunotherapy through multiple pathways, including the increase in LIP, regulation of pH, depletion of GSH/GPX4, and activation of STING, effectively inhibiting cancer growth and metastasis.

14.
J Med Virol ; 95(11): e29219, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37966997

RESUMO

Since its outbreak in late 2021, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely reported to be able to evade neutralizing antibodies, becoming more transmissible while causing milder symptoms than previous SARS-CoV-2 strains. Understanding the underlying molecular changes of Omicron SARS-CoV-2 infection and corresponding host responses are important to the control of Omicron COVID-19 pandemic. In this study, we report an integrative proteomics and metabolomics investigation of serum samples from 80 COVID-19 patients infected with Omicron SARS-CoV-2, as well as 160 control serum samples from 80 healthy individuals and 80 patients who had flu-like symptoms but were negative for SARS-CoV-2 infection. The multiomics results indicated that Omicron SARS-CoV-2 infection caused significant changes to host serum proteome and metabolome comparing to the healthy controls and patients who had flu-like symptoms without COVID-19. Protein and metabolite changes also pointed to liver dysfunctions and potential damage to other host organs by Omicron SARS-CoV-2 infection. The Omicron COVID-19 patients could be roughly divided into two subgroups based on their proteome differences. Interestingly, the subgroup who mostly had received full vaccination with booster shot had fewer coughing symptom, changed sphingomyelin lipid metabolism, and stronger immune responses including higher numbers of lymphocytes, monocytes, neutrophils, and upregulated proteins related to CD4+ T cells, CD8+ effector memory T cells (Tem), and conventional dendritic cells, revealing beneficial effects of full COVID-19 vaccination against Omicron SARS-CoV-2 infection through molecular changes.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Proteoma , Proteômica , Anticorpos Neutralizantes , Anticorpos Antivirais
15.
Mikrochim Acta ; 190(5): 181, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37046118

RESUMO

A simple fluorescence resonance energy transfer (FRET) sensing platform (termed as USP), comprised of upconversion nanoparticles (UCNPs) as the energy donor and Cy5 as the energy acceptor, has been synthesized for cathepsin B (CTSB) activity detection in vitro and in vivo. When Cy5-modified peptide substrate (peptide-Cy5) of CTSB is covalently linked on the surface of UCNPs, the FRET between the UCNPs (excitation: 980 nm; emission: 541 nm/655 nm) and Cy5 (excitation: 645 nm) leads to a reduction in the red upconversion luminescence (UCL) signal intensity of UCNPs. Cy5 can be liberated from UCNPs in the presence of CTSB through the cleavage of peptide-Cy5 by CTSB, leading to the recovery of the red UCL signal of UCNPs. Because the green UCL signal of UCNPs remains constant during the CTSB digestion, it can be considered as an internal reference. The findings demonstrate the ability of USP to detect CTSB with the linear detection ranges of 1 to 100 ng·mL-1 in buffer and 2 × 103 to 1 × 105 cells in 0.2 mL cell lysates. The limits of detection (LODs) are 0.30 ng·mL-1 in buffer and 887 cells in 0.2 mL of cell lysates (S/N = 3). The viability of USP to detect CTSB activity in tumor-bearing mice is has further been investigated using in vivo fluorescent imaging.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanopartículas , Animais , Camundongos , Catepsina B , Transferência Ressonante de Energia de Fluorescência/métodos , Peptídeos
16.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628782

RESUMO

The family Nidulariaceae, consisting of five genera including Cyathus, is a unique group of mushrooms commonly referred to as bird's nest fungi due to their striking resemblance to bird's nests. These mushrooms are considered medicinal mushrooms in Chinese medicine and have received attention in recent years for their anti-neurodegenerative properties. However, despite the interest in these mushrooms, very little is known about their mitochondrial genomes (mitogenomes). This study is the first comprehensive investigation of the mitogenomes of five Nidulariaceae species with circular genome structures ranging in size from 114,236 bp to 129,263 bp. Comparative analyses based on gene content, gene length, tRNA, and codon usage indicate convergence within the family Nidulariaceae and heterogeneity within the order Agaricales. Phylogenetic analysis based on a combined mitochondrial conserved protein dataset provides a well-supported phylogenetic tree for the Basidiomycetes, which clearly demonstrates the evolutionary relationships between Nidulariaceae and other members of Agaricales. Furthermore, phylogenetic inferences based on four different gene sets reveal the stability and proximity of evolutionary relationships within Agaricales. These results reveal the uniqueness of the family Nidulariaceae and its similarity to other members of Agaricales; provide valuable insights into the origin, evolution, and genetics of Nidulariaceae species; and enrich the fungal mitogenome resource. This study will help to expand the knowledge and understanding of the mitogenomes in mushrooms.


Assuntos
Agaricales , Genoma Mitocondrial , Agaricales/genética , Filogenia , Genoma Mitocondrial/genética , Íntrons/genética , Rearranjo Gênico , Proteínas Mitocondriais
17.
Anal Biochem ; 648: 114671, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367218

RESUMO

In this work, a lateral flow immunoassay (LFIA) with peptide functionalized gold nanoparticles (termed as biotin-ppeptide-AuNPs) has been developed for rapid, semi-quantitative detection of PTP1B activity without using any sophisticated equipment. In this method, the anti-phosphotyrosine (anti-pY) monoclonal antibody and streptavidin were used as test line and control line, respectively. The biotin-ppeptide-AuNPs contain 10% biotinylated peptide ligand carry a motif SDGHEpYIYVDP with pY (phosphotyrosine) and 90% pentapeptide (CALNN) ligand, which are used as PTP1B substrates and LFIA labelling probes. The experimental results demonstrate that the as-proposed LFIA with biotin-ppeptide-AuNPs exhibits a wide linear range (from 50 ng/mL to 10 µg/mL), a relatively low limit of detection (LOD, 44 ng/mL), and good specificity. In addition, the LFIA with biotin-ppeptide-AuNPs has been successfully used to evaluate activity levels of PTP1B in four cell lysates and the detection results exhibit a consistent trend with that of commercial kit.


Assuntos
Ouro , Nanopartículas Metálicas , Biotina , Imunoensaio/métodos , Ligantes , Limite de Detecção , Peptídeos , Proteína Tirosina Fosfatase não Receptora Tipo 1
18.
Analyst ; 147(8): 1581-1588, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35332900

RESUMO

Abnormal expression of matrix metalloproteinases plays an important role in tumor invasion and metastasis. In this report, a peptide modified MnFe2O4 ratiometric fluorescent nanoprobe is developed for noninvasively visualizing the distribution of matrix metalloproteinase-7 (MMP-7) in vitro and in vivo. A fluorescein isothiocyanate (FITC) modified peptide containing the specific motif VPLSLTMG for MMP-7 cleavage was conjugated with MnFe2O4 nanoparticles (NPs) to establish a Förster resonance energy transfer (FRET) system for sensing the protease. The rhodamine B (RhB) modified targeting peptide immobilized on the nanoparticle surface was not only used as an internal reference for forming a ratiometric fluorescence system together with the FITC dye, but also used for enhancing the tumor targeting ability. The tumor accumulation amount of the as-developed ratiometric fluorescent probe (termed MnFe2O4-pep-dyes) can be measured by T2-weighted magnetic resonance (T2-weighted MR) imaging because MnFe2O4 NPs display an excellent T2-weighted MR contrast ability. In the presence of MMP-7, FITC detached from the MnFe2O4 surface resulting in the recovery of FITC fluorescence, while no obvious change of the RhB fluorescence was observed. The recovery ratio of FITC to RhB fluorescence intensity is linearly dependent on the MMP-7 concentration within the range of 0.1 to 15 nM in buffer and 5 × 102 to 1 × 104 cells in cell lysates with a limit of detection of 0.1 nM and 436 cells, respectively. MnFe2O4-pep-dyes was further applied to spatially observe MMP-7 expression in a tumor-bearing mouse by in vivo fluorescence imaging with external magnetic field assistance for demonstrating its practicability.


Assuntos
Nanopartículas , Neoplasias , Animais , Fluoresceína-5-Isotiocianato , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Metaloproteinase 7 da Matriz , Camundongos , Neoplasias/diagnóstico , Peptídeos
19.
Analyst ; 147(24): 5739-5746, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409228

RESUMO

The hydrogen peroxide (H2O2) levels in living organisms and environment have strong effects on many biological processes inducing cell apoptosis/cell necrosis and wound disinfection. Therefore, it is important to have an accurate and in situ detection of H2O2. Herein, an AuPd@FexOy nanozyme-based electrochemical (EC) sensor (termed as AuPd@FexOy NPs/GCE) with good stability and anti-interference ability has been prepared for the detection of H2O2 by differential pulse voltammetry (DPV) and chronoamperometry dual-measurement modes. The AuPd@FexOy NPs/GCE exhibits good linear relationships in the ranges from 13.0 to 6.0 × 103 µM (DPV measurement) and 50 to 1.0 × 103 µM (chronoamperometry measurement), low detection limits (LODs) of 1.6 µM (DPV measurement) and 3.0 µM (chronoamperometry measurement) and high sensitivities of 83.8 nA µM-1 cm-2 (DPV measurement) and 120.7 nA µM-1 cm-2 (chronoamperometry measurement). The practicability of the as-prepared AuPd@FexOy NPs/GCE has been demonstrated by an in situ real-time detection of H2O2 released from adherent living MCF-7 cells triggered by varying amounts of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) from 0.5 to 3.0 µM and the quantitative determination of H2O2 in commercial disinfectants.


Assuntos
Desinfetantes , Peróxido de Hidrogênio , Humanos , N-Formilmetionina Leucil-Fenilalanina , Apoptose , Células MCF-7 , Necrose
20.
Analyst ; 147(9): 1808-1814, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35404374

RESUMO

Enzyme-based sensing platforms have undergone rapid development in the field of diagnosis and bioanalysis. Here we present a novel fluorescent artificial enzyme-based detection strategy for L-cysteine (Cys) and H2O2 by fabricating a series of Au-Ag bimetallic nanoparticles with peroxidase-like activity. Taking advantage of the enhanced performance of catalysts by optimizing the surface structure, the sensitive detection of Cys with an ultralow detection limit of 0.035 µM and accurate quantification in the range of 0.075-2 µM were achieved. It was revealed that the mechanism of the catalytic process on the Au-Ag surface follows the electron transfer mechanism rather than active species, that is the peroxidase-like catalysts work as electron transfer intermediates and the electron transfer efficiency will increase with the larger electron cloud density of active sites derived from the electronic synergistic effect between Au and Ag, contributing to the enhanced catalytic activity of peroxidase mimics. This finding could provide guidance for the structural design of high-activity peroxidase mimics.


Assuntos
Nanopartículas Metálicas , Peroxidase , Colorimetria , Corantes , Cisteína/análise , Fluorescência , Ouro/química , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Peroxidase/química , Peroxidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA