Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37806310

RESUMO

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Hormônios Peptídicos/metabolismo , Peptídeos/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , Isolamento Reprodutivo
2.
Plant Cell ; 33(9): 3042-3056, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34125904

RESUMO

In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pectinas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Corpos Multivesiculares/enzimologia , Tubo Polínico/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Nephrol Dial Transplant ; 39(8): 1268-1278, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38130213

RESUMO

BACKGROUND: Chronic kidney disease(CKD) is one of the most prevalent non-communicable health concerns in children and adolescents worldwide; however, data on its incidence, prevalence, disability-adjusted life years (DALYs) and trends in the population are limited. We aimed to assess the global, regional and national trends in CKD burden in children and adolescents. METHODS: In this trend analysis based on the 2019 Global Diseases, Injuries, and Risk Factors Study, CKD incidence, prevalence and DALYs rates per 100 000 population for children and adolescents were reported at the global, regional and national levels, as well as the average annual percentage change (AAPC). These global trends were analyzed by age, sex, region and socio-demographic index (SDI). RESULTS: Globally, the overall incidence of CKD (all stages including kidney replacement therapy) in children and adolescents showed an increasing trend [AAPC 0.44 (95% confidence interval 0.36-0.52)] between 1990 and 2019. Similarly, the overall prevalence of CKD also showed an upward trend [AAPC 0.46 (0.42-0.51)]. However, the DALYs of CKD showed a continuous decreasing trend [AAPC -1.18 (-1.37 to -0.99)]. The population aged 15-19 years had the largest CKD incidence increase during this period. The largest increase in age-standardized incidence rate (ASIR) was in middle SDI countries [AAPC 0.56 (0.45-0.67)]. The relationship between the ASIR and SDI showed an inverse U-shaped correlation while the relationship between the age-standardized DALYs rate (ASDR) and SDI showed an inverse trend with SDI. Among adolescents (15-19 years), the ASIR continued to increase for five causes of CKD, owing to type 2 diabetes mellitus and hypertension. Most of the disease burden was concentrated in countries with a lower SDI. Andean Latin America and Central Latin America showed the largest increases in CKD ASIR between 1990 and 2019. CONCLUSION: The burden of CKD in children and adolescents has increased worldwide, especially in regions and countries with a lower SDI.


Assuntos
Saúde Global , Insuficiência Renal Crônica , Humanos , Adolescente , Criança , Insuficiência Renal Crônica/epidemiologia , Masculino , Feminino , Incidência , Prevalência , Pré-Escolar , Saúde Global/estatística & dados numéricos , Efeitos Psicossociais da Doença , Lactente , Fatores de Risco , Anos de Vida Ajustados por Deficiência , Recém-Nascido
4.
Lipids Health Dis ; 23(1): 84, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509588

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibition is recognized for its evident renoprotective benefits in diabetic renal disease. Recent data suggest that SGLT2 inhibition also slows down kidney disease progression and reduces the risk of acute kidney injury, regardless of whether the patient has diabetes or not, but the mechanism behind these observed effects remains elusive. The objective of this study is to utilize a mendelian randomization (MR) methodology to comprehensively examine the influence of metabolites in circulation regarding the impact of SGLT2 inhibition on kidney function. METHODS: We used a MR study to obtain associations between genetic proxies for SGLT2 inhibition and kidney function. We retrieved the most recent and comprehensive summary statistics from genome-wide association studies (GWAS) that have been previously published and involved kidney function parameters such as estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (UACR), and albuminuria. Additionally, we included blood metabolite data from 249 biomarkers in the UK Biobank for a more comprehensive analysis. We performed MR analyses to explore the causal relationships between SGLT2 inhibition and kidney function and two-step MR to discover potential mediating metabolites. RESULTS: The study found that a decrease in HbA1c levels by one standard deviation, which is genetically expected to result in SGLT2 inhibition, was linked to a decreased likelihood of developing type 2 diabetes mellitus (T2DM) (odds ratio [OR] = 0.55 [95% CI 0.35, 0.85], P = 0.007). Meanwhile, SGLT2 inhibition also protects eGFR (ß = 0.05 [95% CI 0.03, 0.08], P = 2.45 × 10- 5) and decreased UACR (-0.18 [95% CI -0.33, -0.02], P = 0.025) and albuminuria (-1.07 [95% CI -1.58, -0.57], P = 3.60 × 10- 5). Furthermore, the study found that of the 249 metabolites present in the blood, only one metabolite, specifically the concentration of small high-density lipoprotein (HDL) particles, was significantly correlated with both SGLT2 inhibition and kidney function. This metabolite was found to play a crucial role in mediating the improvement of renal function through the use of SGLT2 inhibition (ß = 0.01 [95% CI 0.005, 0.018], P = 0.001), with a mediated proportion of 13.33% (95% CI [5.71%, 26.67%], P = 0.020). CONCLUSIONS: The findings of this investigation provide evidence in favor of a genetically anticipated biological linkage between the inhibition of SGLT2, the presence of circulating metabolites, and renal function. The findings demonstrate that the protective effect of SGLT2 inhibition on renal function is mostly mediated by HDL particle concentrations in circulating metabolites. These results offer significant theoretical support for both the preservation of renal function and a better comprehension of the mechanisms underlying SGLT2 inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Lipoproteínas HDL/genética , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/farmacologia , Albuminúria/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Rim , Taxa de Filtração Glomerular/genética
5.
Ren Fail ; 46(1): 2315298, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38357763

RESUMO

BACKGROUND: The objective of this study was to develop and validate a machine learning (ML) model for predict in-hospital mortality among critically ill patients with congestive heart failure (CHF) combined with chronic kidney disease (CKD). METHODS: After employing least absolute shrinkage and selection operator regression for feature selection, six distinct methodologies were employed in the construction of the model. The selection of the optimal model was based on the area under the curve (AUC). Furthermore, the interpretation of the chosen model was facilitated through the utilization of SHapley Additive exPlanation (SHAP) values and the Local Interpretable Model-Agnostic Explanations (LIME) algorithm. RESULTS: This study collected data and enrolled 5041 patients on CHF combined with CKD from 2008 to 2019, utilizing the Medical Information Mart for Intensive Care Unit. After selection, 22 of the 47 variables collected post-intensive care unit admission were identified as mortality-associated and subsequently utilized in the development of ML models. Among the six models generated, the eXtreme Gradient Boosting (XGBoost) model demonstrated the highest AUC at 0.837. Notably, the SHAP values highlighted the sequential organ failure assessment score, age, simplified acute physiology score II, and urine output as the four most influential variables in the XGBoost model. In addition, the LIME algorithm explains the individualized predictions. CONCLUSIONS: In conclusion, our study accomplished the successful development and validation of ML models for predicting in-hospital mortality in critically ill patients with CHF combined with CKD. Notably, the XGBoost model emerged as the most efficacious among all the ML models employed.


Assuntos
Compostos de Cálcio , Insuficiência Cardíaca , Óxidos , Insuficiência Renal Crônica , Humanos , Mortalidade Hospitalar , Estado Terminal , Insuficiência Cardíaca/complicações , Insuficiência Renal Crônica/complicações , Algoritmos , Aprendizado de Máquina
6.
Sensors (Basel) ; 24(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275394

RESUMO

When using transformer insulation oil as a liquid dielectric, the oil is easily polluted by the solid particles generated in the operation of the transformer, and these metallic impurity particles have a significant impact on the insulation performance inside the power transformer. The force of the metal particles suspended in the flow insulation oil is multidimensional, which will lead to a change in the movement characteristics of the metal particles. Based on this, this study explored the motion rules of suspended metallic impurity particles in mobile insulating oil in different electric field environments and the influencing factors. A multiphysical field model of the solid-liquid two-phase flow of single-particle metallic impurity particles in mobile insulating oil was constructed using the dynamic analysis method, and the particles' motion characteristics in the oil in different electric field environments were simulated. The motion characteristics of metallic impurity particles under conditions of different particle sizes, oil flow velocities, and insulation oil qualities and influencing factors were analyzed to provide theoretical support for the detection of impurity particles in transformer insulation oil and enable accurate estimations of the location of equipment faults. Our results show that there are obvious differences in the trajectory of metallic impurity particles under different electric field distributions. The particles will move towards the region of high field intensity under an electric field, and the metallic impurity particles will not collide with the electrode under an AC field. When the electric field intensity and particle size increase, the trajectory of the metallic impurity particles between electrodes becomes denser, and the number of collisions between particles and electrodes and the motion speed both increase. Under the condition of a higher oil flow velocity, the number of collisions between metal particles and electrodes is reduced, which reduces the possibility of particle agglomeration. When the temperature of the insulation oil changes and the quality deteriorates, its dynamic viscosity changes. With a decrease in the dynamic viscosity of the insulation oil, the movement of the metallic impurity particles between the electrodes becomes denser, the collision times between the particles and electrodes increase, and the maximum motion speed of the particles increases.

7.
Ecotoxicol Environ Saf ; 252: 114570, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706528

RESUMO

With styrene and acrylonitrile in ABS plastic toys as examples, this paper introduces to the development of a systematic strategy for studying the chemical migration risk in toys. The approach, included the detection method, establishment of migration model, model verification, and the practical application of the model in risk assessment. First, simple and sensitive methods for detecting analyte residues and migration were developed by headspace GC-MS. Then, the migration models were established based on the migration data from 5 min to 168 h and verified using 11 ABS samples. The results showed that the predicted values of the models and the experimental values had a good fit (RMSE=0.10-8.72 %). Subsequently, the migration of analytes in 94 ABS toys was predicted with these models at specific migration times. The daily average exposure level to styrene and acrylonitrile were estimated for children (3 months to 3 years). At last, the migration models reasonably predicted that the cancer risk of styrene and acrylonitrile in ABS toys were 1.6 × 10-8-1.4 × 10-6 and 3.1 × 10-8-1.6 × 10-6, respectively. This research contributes to promote toy safety and child health by enriching migration models and risk assessments.


Assuntos
Acrilonitrila , Estireno , Criança , Humanos , Estireno/química , Acrilonitrila/química , Plásticos/química , Butadienos , Medição de Risco
8.
Ren Fail ; 45(1): 2212790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37203863

RESUMO

BACKGROUND: This study aimed to establish and validate a machine learning (ML) model for predicting in-hospital mortality in critically ill patients with chronic kidney disease (CKD). METHODS: This study collected data on CKD patients from 2008 to 2019 using the Medical Information Mart for Intensive Care IV. Six ML approaches were used to build the model. Accuracy and area under the curve (AUC) were used to choose the best model. In addition, the best model was interpreted using SHapley Additive exPlanations (SHAP) values. RESULTS: There were 8527 CKD patients eligible for participation; the median age was 75.1 (interquartile range: 65.0-83.5) years, and 61.7% (5259/8527) were male. We developed six ML models with clinical variables as input factors. Among the six models developed, the eXtreme Gradient Boosting (XGBoost) model had the highest AUC, at 0.860. According to the SHAP values, the sequential organ failure assessment score, urine output, respiratory rate, and simplified acute physiology score II were the four most influential variables in the XGBoost model. CONCLUSIONS: In conclusion, we successfully developed and validated ML models for predicting mortality in critically ill patients with CKD. Among all ML models, the XGBoost model is the most effective ML model that can help clinicians accurately manage and implement early interventions, which may reduce mortality in critically ill CKD patients with a high risk of death.


Assuntos
Estado Terminal , Insuficiência Renal Crônica , Humanos , Masculino , Idoso , Feminino , Mortalidade Hospitalar , Algoritmos , Aprendizado de Máquina
9.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834527

RESUMO

Porcine spermatozoa are stored in the oviductal isthmus after natural mating, and the number of spermatozoa is increased in the oviductal ampulla when the mature cumulus-oocyte complexes (COCs) are transferred into the ampulla. However, the mechanism is unclear. Herein, natriuretic peptide type C (NPPC) was mainly expressed in porcine ampullary epithelial cells, whereas its cognate receptor natriuretic peptide receptor 2 (NPR2) was located on the neck and the midpiece of porcine spermatozoa. NPPC increased sperm motility and intracellular Ca2+ levels, and induced sperm release from oviduct isthmic cell aggregates. These actions of NPPC were blocked by the cyclic guanosine monophosphate (cGMP)-sensitive cyclic nucleotide-gated (CNG) channel inhibitor l-cis-Diltiazem. Moreover, porcine COCs acquired the ability to promote NPPC expression in the ampullary epithelial cells when the immature COCs were induced to maturation by epidermal growth factor (EGF). Simultaneously, transforming growth factor-ß ligand 1 (TGFB1) levels were dramatically increased in the cumulus cells of the mature COCs. The addition of TGFB1 promoted NPPC expression in the ampullary epithelial cells, and the mature COC-induced NPPC was blocked by the transforming growth factor-ß type 1 receptor (TGFBR1) inhibitor SD208. Taken together, the mature COCs promote NPPC expression in the ampullae via TGF-ß signaling, and NPPC is required for the release of porcine spermatozoa from the oviduct isthmic cells.


Assuntos
Oócitos , Motilidade dos Espermatozoides , Feminino , Humanos , Masculino , Suínos , Animais , Oócitos/metabolismo , Sêmen , Oviductos , Espermatozoides , Fatores de Crescimento Transformadores/metabolismo , Peptídeos Natriuréticos/metabolismo
10.
J Integr Plant Biol ; 65(1): 167-187, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36107150

RESUMO

Iron (Fe) is essential for DNA synthesis, photosynthesis and respiration of plants. The demand for Fe substantially increases during legumes-rhizobia symbiotic nitrogen fixation because of the synthesis of leghemoglobin in the host and Fe-containing proteins in bacteroids. However, the mechanism by which plant controls iron transport to nodules remains largely unknown. Here we demonstrate that GmYSL7 serves as a key regulator controlling Fe uptake from root to nodule and distribution in soybean nodules. GmYSL7 is Fe responsive and GmYSL7 transports iron across the membrane and into the infected cells of nodules. Alterations of GmYSL7 substantially affect iron distribution between root and nodule, resulting in defective growth of nodules and reduced nitrogenase activity. GmYSL7 knockout increases the expression of GmbHLH300, a transcription factor required for Fe response of nodules. Overexpression of GmbHLH300 decreases nodule number, nitrogenase activity and Fe content in nodules. Remarkably, GmbHLH300 directly binds to the promoters of ENOD93 and GmLbs, which regulate nodule number and nitrogenase activity, and represses their transcription. Our data reveal a new role of GmYSL7 in controlling Fe transport from host root to nodule and Fe distribution in nodule cells, and uncover a molecular mechanism by which Fe affects nodule number and nitrogenase activity.


Assuntos
Glycine max , Ferro , Glycine max/metabolismo , Ferro/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Transporte Biológico , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Simbiose/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Plant Physiol ; 186(2): 865-873, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33638984

RESUMO

Reproductive isolation is a prerequisite to form and maintain a new species. Multiple prezygotic and postzygotic reproductive isolation barriers have been reported in plants. In the model plant, Arabidopsis thaliana conspecific pollen tube precedence controlled by AtLURE1/PRK6-mediated signaling has been recently reported as a major prezygotic reproductive isolation barrier. By accelerating emergence of own pollen tubes from the transmitting tract, A. thaliana ovules promote self-fertilization and thus prevent fertilization by a different species. Taking advantage of a septuple atlure1null mutant, we now report on the role of AtLURE1/PRK6-mediated signaling for micropylar pollen tube guidance. Compared with wild-type (WT) ovules, atlure1null ovules displayed remarkably reduced micropylar pollen tube attraction efficiencies in modified semi-in vivo A. thaliana ovule targeting assays. However, when prk6 mutant pollen tubes were applied, atlure1null ovules showed micropylar attraction efficiencies comparable to that of WT ovules. These findings indicate that AtLURE1/PRK6-mediated signaling regulates micropylar pollen tube attraction in addition to promoting emergence of own pollen tubes from the transmitting tract. Moreover, semi-in vivo ovule targeting competition assays with the same amount of pollen grains from both A. thaliana and Arabidopsis lyrata showed that A. thaliana WT and xiuqiu mutant ovules are mainly targeted by own pollen tubes and that atlure1null mutant ovules are also entered to a large extent by A. lyrata pollen tubes. Taken together, we report that AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube attraction representing an additional prezygotic isolation barrier.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Polinização , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Isolamento Reprodutivo
12.
Analyst ; 147(5): 915-922, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35142762

RESUMO

Nanozymes have attracted considerable attention as a new type of promising artificial enzyme in recent years. Here, an oxidase-like cobalt-nitrogen-carbon (Co-N/C-900) nanozyme with well-regulated metal atom spatial distribution has been derived from Co-Zn bimetal zeolitic imidazolate framework precursors and used to develop a facile colorimetric sensing method for L-cysteine. With the aid of Co-N/C-900, the colorless 3,3',5,5'-tetramethylbenzidine (TMB) was oxidized to blue oxidized TMB in the absence of H2O2. However, the oxidation was inhibited after the addition of L-cysteine, and the blue color faded to colorless. Thus, Co-N/C-900 exhibited quite good oxidase-like activity with high catalytic efficiency. Therefore, a facile and efficient colorimetric method to sensitively determine L-cysteine with a low detection limit of 33 nM (S/N = 3) has been developed. Furthermore, favorable selectivity and anti-interference ability towards the determination of L-cysteine based on this approach have also been achieved. It is believed that this colorimetric method for the detection of L-cysteine based on Co-N/C-900 will show potential applications in bioscience and bioengineering.


Assuntos
Colorimetria , Estruturas Metalorgânicas , Catálise , Colorimetria/métodos , Cisteína , Peróxido de Hidrogênio , Limite de Detecção , Oxirredutases
13.
J Integr Plant Biol ; 64(11): 2060-2074, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35984097

RESUMO

Abscisic acid (ABA) is a key regulator of plant responses to abiotic stresses, such as drought. Abscisic acid receptors and coreceptors perceive ABA to activate Snf1-related protein kinase2s (SnRK2s) that phosphorylate downstream effectors, thereby activating ABA signaling and the stress response. As stress responses come with fitness penalties for plants, it is crucial to tightly control SnRK2 kinase activity to restrict ABA signaling. However, how SnRK2 kinases are inactivated remains elusive. Here, we show that NUCLEAR PORE ANCHOR (NUA), a nuclear pore complex (NPC) component, negatively regulates ABA-mediated inhibition of seed germination and post-germination growth, and drought tolerance in Arabidopsis thaliana. The role of NUA in response to ABA depends on SnRK2.2 and SnRK2.3 for seed germination and on SnRK2.6 for drought. NUA does not directly inhibit the phosphorylation of these SnRK2s or affects their abundance. However, the NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, negatively regulates ABA signaling by directly interacting with and inhibiting SnRK2 phosphorylation and protein levels. More importantly, we demonstrated that SnRK2.6 can be SUMOylated in vitro, and ESD4 inhibits its SUMOylation. Taken together, we identified NUA and ESD4 as SnRK2 kinase inhibitors that block SnRK2 activity, and reveal a mechanism whereby NUA and ESD4 negatively regulate plant responses to ABA and drought stress possibly through SUMOylation-dependent regulation of SnRK2s.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Poro Nuclear/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/genética
14.
BMC Plant Biol ; 21(1): 35, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33421994

RESUMO

BACKGROUND: Abscisic acid (ABA) plays an important role in plant growth and adaptation through the ABA signaling pathway. The ABA-responsive element binding (AREB/ABF) family transcriptional factors are central regulators that integrate ABA signaling with various signaling pathways. It has long been known that ABA inhibits rhizobial infection and nodule formation in legumes, but the underlying molecular mechanisms remain elusive. RESULTS: Here, we show that nodulation is very sensitive to ABA and exogenous ABA dramatically inhibits rhizobial infection and nodule formation in soybean. In addition, we proved that GmbZIP1, an AREB/ABF transcription factor, is a major regulator in both nodulation and plant response to ABA in soybean. GmbZIP1 was specifically expressed during nodule formation and development. Overexpression of GmbZIP1 resulted in reduced rhizobial infection and decreased nodule number. Furthermore, GmbZIP1 is responsive to ABA, and ectopic overexpression of GmbZIP1 increased sensitivity of Arabidopsis plants to ABA during seed germination and postgerminative growth, and conferred enhanced drought tolerance of plants. Remarkably, we found that GmbZIP1 directly binds to the promoter of GmENOD40-1, a marker gene for nodule formation, to repress its expression. CONCLUSION: Our results identified GmbZIP1 as a node regulator that integrates ABA signaling with nodulation signaling to negatively regulate nodule formation.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Nodulação/efeitos dos fármacos , Rhizobium , Plantas Geneticamente Modificadas , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição
15.
Ecotoxicol Environ Saf ; 209: 111786, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33340956

RESUMO

A total of 90 wooden toys were collected, and six wood preservatives (chlorophenols and lindane) were analyzed by using gas chromatography-tandem mass spectrometry to assess the exposure risk of children to wood preservatives through oral contact with wooden toys. The detection rates of six preservatives ranged from 2.2% to 22.2%. The contents of the preservatives ranged from 0.6 µg/kg to 9.6 µg/kg. 2,4-Dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) had higher detection rates and contents than other preservatives. Thus, their migration behaviors from toys to saliva were further investigated. In 11 positive samples, the max migration ratios of 2,4-DCP and 2,4,6-TCP ranged from 7.1% to 20.3% and from 11.1% to 24.8%, respectively. For children aged 3-36 months, the daily average 2,4-DCP exposure level associated with wooden toys ranged from 2.7 pg/(kg day) to 46.9 pg/(kg day), and the daily average 2,4,6-TCP exposure ranged from 3.6 pg/(kg day) to 69.4 pg/(kg day). The contribution to exposure provided by the saliva mobilization pathway was more than that provided by the ingestion of scraped-off toys, and the exposure level of 2,4,6-TCP was greater than that of 2,4-DCP. The max hazard quotient for 2,4-DCP was 1.9 × 10-4, and the max cancer risk for 2,4,6-TCP was 1.2 × 10-9. The above results indicated that although wood preservatives were distributed in wooden toys, exposure arising from directly mouthing these materials currently does not pose unacceptable risks to children.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Jogos e Brinquedos , Madeira/química , Criança , Pré-Escolar , China , Clorofenóis/análise , Clorofenóis/toxicidade , Exposição Ambiental/análise , Cromatografia Gasosa-Espectrometria de Massas , Hexaclorocicloexano/análise , Hexaclorocicloexano/toxicidade , Humanos , Lactente , Medição de Risco , Saliva/química
16.
J Clin Monit Comput ; 35(3): 463-468, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189165

RESUMO

We studied the application of a mobile terminal application program in endotracheal tube (ETT) cuff pressure measurement to improve the implementation rate of scientific ETT cuff pressure measurement and to ensure that the pressure falls within the recommended range. A pre-post controlled study lasting for 18 months was undertaken in a 40-bed general intensive care unit (GICU). This included a 6-month baseline period (baseline group) and a 6-month intervention period (intervention group). The mobile terminal application program was applied to monitor the cuff pressure of endotracheal intubation as an intervention measure during the intervention period. ETT pressure was the main outcome measure, while gender, age, causes for ICU admission, sedation score, duration of prior intubation, size of ETT, and number of VAP patients were secondary outcomes. ETT cuff pressure was monitored 742 times in both the baseline group and the intervention group. A total of 56.9% of the cuff pressure measurements in the baseline group were within the recommended range, while 78.4% of measurements in the intervention group were within the recommended range, reflecting a statistically significant difference (P < 0.05). The application of the mobile terminal application program used for ETT cuff pressure measurement could improve the percentage of ETT cuff pressure measurements falling within the recommended range.


Assuntos
Intubação Intratraqueal , Traqueia , Humanos , Unidades de Terapia Intensiva
17.
Org Biomol Chem ; 18(26): 4922-4926, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573645

RESUMO

The selective N-monomethylation of primary anilines was realized by the use of the Me3N-BH3/N,N-dimethylformamide (DMF) system as the methyl source. This method also allows for the controllable introduction of N-CH2D, N-CHD2, and N-CD3 units with high levels of deuterium incorporation using Me3N-BH3/d7-DMF, Me3N-BD3/DMF and Me3N-BD3/d7-DMF systems, respectively.

18.
PLoS Genet ; 13(8): e1006947, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28787436

RESUMO

The phytohormone abscisic acid (ABA) is an essential part of the plant response to abiotic stressors such as drought. Upon the perception of ABA, pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) proteins interact with co-receptor protein phosphatase type 2Cs to permit activation Snf1-related protein kinase2 (SnRK2) kinases, which switch on ABA signaling by phosphorylating various target proteins. Thus, SnRK2 kinases are central regulators of ABA signaling. However, the mechanisms that regulate SnRK2 degradation remain elusive. Here, we show that SnRK2.3 is degradated by 26S proteasome system and ABA promotes its degradation. We found that SnRK2.3 interacts with AtPP2-B11 directly. AtPP2-B11 is an F-box protein that is part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex that negatively regulates plant responses to ABA by specifically promoting the degradation of SnRK2.3. AtPP2-B11 was induced by ABA, and the knockdown of AtPP2-B11 expression markedly increased the ABA sensitivity of plants during seed germination and postgerminative development. Overexpression of AtPP2-B11 does not affect ABA sensitivity, but inhibits the ABA hypersensitive phenotypes of SnRK2.3 overexpression lines. These results reveal a novel mechanism through which AtPP2-B11 specifically degrades SnRK2.3 to attenuate ABA signaling and the abiotic stress response in Arabidopsis.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise , RNA Ribossômico/genética , Proteínas Ligases SKP Culina F-Box/genética
19.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012796

RESUMO

DELLA (GAI/RGA/RGL1/RGL2/RGL3) proteins are key negative regulators in GA (gibberellin) signaling and are involved in regulating plant growth as a response to environmental stresses. It has been shown that the DELLA protein PROCERA (PRO) in tomato promotes drought tolerance, but its molecular mechanism remains unknown. Here, we showed that the gai-1 (gibberellin insensitive 1) mutant (generated from the gai-1 (Ler) allele (with a 17 amino acid deletion within the DELLA domain of GAI) by backcrossing gai-1 (Ler) with Col-0 three times), the gain-of-function mutant of GAI (GA INSENSITIVE) in Arabidopsis, increases drought tolerance. The stomatal density of the gai-1 mutant was increased but its stomatal aperture was decreased under abscisic acid (ABA) treatment conditions, suggesting that the drought tolerance of the gai-1 mutant is a complex trait. We further tested the interactions between DELLA proteins and ABF2 (abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors) and found that there was a strong interaction between DELLA proteins and ABF2. Our results provide new insight into DELLA proteins and their role in drought stress tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
20.
Plant J ; 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29775508

RESUMO

Leaves are essential organs for plants. We previously identified a functional gene possibly encoding a component of the SWI/SNF complex named Leaf and Flower Related (LFR) in Arabidopsis thaliana. Loss-of-function mutants of LFR displayed obvious defects in leaf morphogenesis, indicating its vital role in leaf development. Here an allelic null mutant of ASYMMETRIC LEAVES2 (AS2), as2-6, was isolated as an enhancer of lfr-1 in petiole length, vasculature pattern and leaf margin development. The lfr as2 double-mutants showed enhanced ectopic expression of BREVIPEDICELLUS (BP) compared with each of the single-mutants, which is consistent with their synergistic genetic enhancement in multiple BP-dependent development processes. Moreover, LFR and several putative subunits of the SWI/SNF complex interacted physically with AS2. LFR associated with BP chromatin in an AS1-AS2-dependent manner to promote the nucleosome occupancy for appropriate BP repression in leaves. Taken together, our findings reveal that LFR and the SWI/SNF complex play roles in leaf development at least partly by repressing BP transcription as interacting factors of AS2, which expounds our understanding of BP repression at the chromatin structure level in leaf development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA