Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Breed ; 42(4): 19, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309460

RESUMO

Chromosome segment substitution line (CSSL) is important for functional analysis and design breeding of target genes. Here, a novel rice CSSL-Z431 was identified from indica restorer line Xihui18 as recipient and japonica Huhan3 as donor. Z431 contained six segments from Huhan3, with average substitution length of 2.12 Mb. Compared with Xihui18, Z431 increased panicle number per plant (PN) and displayed short-wide grains. The short-wide grain of Z431 was caused by decreased length and increased width of glume cell. Then, thirteen QTLs were identified in secondary F2 population from Xihui18/Z431. Again, eleven QTLs (qPL3, qPN3, qGPP12, qSPP12, qGL3, qGW5, qRLW2, qRLW3, qRLW5, qGWT3, qGWT5-2) were validated by six single-segment substitution lines (SSSLs, S1-S6) developed in F3. In addition, fifteen QTLs (qPN5, qGL1, qGL2, qGL5, qGW1, qGW5-1, qRLW1, qRLW5-2, qGWT1, qGWT2, qYD1, qYD2, qYD3, qYD5, qYD12) were detected by these SSSLs, while not be identified in the F2 population. Multiple panicles of Z431 were controlled by qPN3 and qPN5. OsIAGLU should be the candidate gene for qPN3. The short-wide grain of Z431 was controlled by qGL3, qGW5, etc. By DNA sequencing and qRT-PCR analysis, two best candidate genes for qGL3 and qGW5 were identified, respectively. In addition, pyramid of different QTLs in D1-D3 and T1-T2 showed independent inheritance or various epistatic effects. So, it is necessary to understand all genetic effects of target QTLs for designing breeding. Furthermore, these secondary substitution lines improved the deficiencies of Xihui18 to some extent, especially increasing yield per plant in S1, S3, S5, D1-D3, T1, and T2. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01284-x.

2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(1): 42-46, 2022 Jan 30.
Artigo em Zh | MEDLINE | ID: mdl-35150106

RESUMO

Based on the biomechanical mechanism of human upper limb, the disadvantages of traditional rehabilitation training and the current status of upper limb rehabilitation robot, a six degree of freedom, flexible adjustment, wearable upper limb rehabilitation exoskeleton design scheme is proposed. Firstly, the mechanics of each joint of the upper limb is analyzed, and the virtual prototype design of the whole mechanical structure of the upper limb rehabilitation wearable exoskeleton is carried out by using CATIA three-dimensional software. The tooth transmission of the forearm and the upper arm single row four point contact ball bearing with internal/external rotation and the shoulder flexible passive adjustment mechanism (viscoelastic damper) are innovatively designed. Then, the joints of the upper limb rehabilitation exoskeleton are analyzed, theoretical analysis and calculation of the driving torque, the selection of the motor and gearbox of each driving joint are carried out. Finally, the whole finite element analysis of the upper limb exoskeleton is carried out. The research and experimental results showed that the design scheme of the upper limb exoskeleton assist structure is highly feasible, which can help the patients with upper limb paralysis and motor dysfunction self-rehabilitation.


Assuntos
Exoesqueleto Energizado , Robótica , Reabilitação do Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Humanos , Torque , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA