Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15802, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138082

RESUMO

This study investigates the removal of As(V) from aqueous media using water stable UiO-66-NDC/GO prepared via the solvothermal procedure. The synthesized material was analyzed by Raman spectroscopy, UV-visible, X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), Fourier Transform Infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) support its applicability as a super-adsorbent for the adsorption of As(V) ions from aqueous solutions. The effect of various parameters, including initial ion concentration, temperature, adsorbent dose, and pH on the adsorption of As(V) was studied to recognize the optimum adsorption conditions. The qmax obtained for this study using Langmuir isotherms was found at 147.06 mg/g at room temperature. Thermodynamic parameters ΔH°, ΔG°, and ΔS° were also calculated and negative values of ΔG° represent that the As(V) adsorption process occurred exothermically and spontaneously. Meanwhile, theoretical density functional simulation findings are accommodated to support these experimental results. It is observed that the dynamic nature of graphene oxide and the UiO-66 NDC nanocomposite system becomes superior for adsorption studies due to delocalized surface states. UiO-66-NDC/GO also showed high reusability for up four regeneration performances using 0.01 M HCl as a regenerant.

2.
Chemosphere ; 275: 130051, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33676273

RESUMO

Monocrotophos (MCP) is an organophosphate insecticide with broad application in agricultural crops like rice, maize, sugarcane, cotton, soybeans, groundnut and vegetables. MCP solubilize in water readily and thus reduced sorption occurs in soil. This leads to MCP leaching into the groundwater and pose a significant threat of contamination. The MCP's half-life depends on the temperature and pH value and estimated as 17-96 d. But the half-life of technical grade MCP can exceed up to 2500 days if properly stored at 38 °C in a glass or polyethylene container in a stable condition. It causes abnormality, ranging from mild to severe confusion, agitation, hypersalivation, convulsion, pulmonary failure, senescence in mammals and insects. MCP affects humans by inhibiting the activity of the acetylcholine esterase enzyme. MCP is accountable for the catalytic degradation of acetylcholine and affects the neurotransmission between neurons. This review discusses MCP's various aspects and fate on aquatic and terrestrial life forms, quantification methods for monitoring, various degradation processes, and their mechanisms. Different case studies related to its impact on the human population in different parts of the world have been discussed. Efforts have also been made to summarize and present different microbial population's role in its degradation and mineralization.


Assuntos
Inseticidas , Monocrotofós , Animais , Produtos Agrícolas , Ecossistema , Humanos , Inseticidas/toxicidade , Monocrotofós/toxicidade , Solo
3.
Artigo em Inglês | MEDLINE | ID: mdl-33076575

RESUMO

Glyphosate is a non-specific organophosphate pesticide, which finds widespread application in shielding crops against the weeds. Its high solubility in hydrophilic solvents, especially water and high mobility allows the rapid leaching of the glyphosate into the soil leading to contamination of groundwater and accumulation into the plant tissues, therefore intricating the elimination of the herbicides. Despite the widespread application, only a few percentages of the total applied glyphosate serve the actual purpose, dispensing the rest in the environment, thus resulting in reduced crop yields, low quality agricultural products, deteriorating soil fertility, contributing to water pollution, and consequently threatening human and animal life. This review gives an insight into the toxicological effects of the herbicide glyphosate and current approaches to track and identify trace amounts of this agrochemical along with its biodegradability and possible remediating strategies. Efforts have also been made to summarize the biodegradation mechanisms and catabolic enzymes involved in glyphosate metabolism.


Assuntos
Glicina/análogos & derivados , Herbicidas , Biodegradação Ambiental , Glicina/toxicidade , Herbicidas/toxicidade , Humanos , Plantas Daninhas , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA