Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Curr Osteoporos Rep ; 20(6): 433-441, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087213

RESUMO

PURPOSE OF REVIEW: Chemotherapy drugs combat tumor cells and reduce metastasis. However, a significant side effect of some chemotherapy strategies is loss of skeletal muscle and bone. In cancer patients, maintenance of lean tissue is a positive prognostic indicator of outcomes and helps to minimize the toxicity associated with chemotherapy. Bone-muscle crosstalk plays an important role in the function of the musculoskeletal system and this review will focus on recent findings in preclinical and clinical studies that shed light on chemotherapy-induced bone-muscle crosstalk. RECENT FINDINGS: Chemotherapy-induced loss of bone and skeletal muscle are important clinical problems. Bone antiresorptive drugs prevent skeletal muscle weakness in preclinical models. Chemotherapy-induced loss of bone can cause muscle weakness through both changes in endocrine signaling and mechanical loading between muscle and bone. Chemotherapy-induced changes to bone-muscle crosstalk have implications for treatment strategies and patient quality of life. Recent findings have begun to determine the role of chemotherapy in bone-muscle crosstalk and this review summarizes the most relevant clinical and preclinical studies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Qualidade de Vida , Osso e Ossos , Músculo Esquelético , Debilidade Muscular/induzido quimicamente , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos
2.
Exp Physiol ; 106(2): 506-518, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369797

RESUMO

NEW FINDINGS: What is the central question of this study? Cachexia causes severe changes in skeletal muscle metabolism and function and is a key predictor of negative outcomes in cancer patients: what are the changes in whole animal energy metabolism and mitochondria in skeletal muscle? What is the main finding and its importance? There is decreased whole animal energy expenditure in mice with cachexia. They displayed highly dysmorphic mitochondria and mitophagy in skeletal muscle. ABSTRACT: Cachexia causes changes in skeletal muscle metabolism. Mice with MDA-MB-231 breast cancer bone metastases and cachexia have decreased whole animal energy metabolism and increased skeletal muscle mitophagy. We examined whole animal energy metabolism by indirect calorimetry in mice with MDA-MB-231 breast cancer bone metastases, and showed decreased energy expenditure. We also examined skeletal muscle mitochondria and found that mitochondria in mice with MDA-MB-231 bone metastases are highly dysmorphic and have altered protein markers of mitochondrial biogenesis and dynamics. In addition, LC3B protein was increased in mitochondria of skeletal muscle from cachectic mice, and colocalized with the mitochondrial protein Tom20. Our data demonstrate the importance of mitophagy in cachexia. Understanding these changes will help contribute to defining treatments for cancer cachexia.


Assuntos
Neoplasias Ósseas/metabolismo , Caquexia/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Mitofagia/fisiologia , Animais , Neoplasias Ósseas/secundário , Caquexia/patologia , Metabolismo Energético/fisiologia , Feminino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Biogênese de Organelas
3.
Semin Cell Dev Biol ; 49: 24-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26593325

RESUMO

Our appreciation of crosstalk between muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. While the recent identification of new 'myokines' has shifted some focus to the role of muscle in this partnership, bone-derived factors and their effects on skeletal muscle should not be overlooked. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGF-ß as a cause of skeletal muscle weakness in the setting of cancer-induced bone destruction. Oxidation of the ryanodine receptor/calcium release channel (RyR1) in skeletal muscle occurs via a TGF-ß-Nox4-RyR1 axis and leads to calcium mishandling and decreased muscle function. Multiple points of potential therapeutic intervention were identified, from preventing the bone destruction to stabilizing the RYR1 calcium channel. This new data reinforces the concept that bone can be an important source of signaling factors in pathphysiological settings.


Assuntos
Osso e Ossos/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Sinalização do Cálcio , Comunicação Celular , Humanos , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Estresse Oxidativo , Fator de Crescimento Transformador beta/fisiologia
4.
Curr Osteoporos Rep ; 15(1): 18-23, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28161871

RESUMO

PURPOSE OF REVIEW: The role of bone-derived factors in regulation of skeletal muscle function is an important emerging aspect of research into bone-muscle crosstalk. Implications for this area of research are far reaching and include understanding skeletal muscle weakness in cancer, osteoporosis, cachexia, rare diseases of bone, and aging. RECENT FINDINGS: Recent research shows that bone-derived factors can lead to changes in the skeletal muscle. These changes can either be anabolic or catabolic, and we focus this review on the role of TGFß in driving oxidative stress and skeletal muscle weakness in the setting of osteolytic cancer in the bone. The bone is a preferred site for breast cancer metastasis and leads to pathological bone loss. Osteolytic cancer in the bone leads to release of TGFß from the bone via osteoclast-mediated bone destruction. Our appreciation of crosstalk between the muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGFß as a cause of skeletal muscle weakness in the setting of osteolytic cancer in the bone. Multiple points of potential therapeutic intervention are discussed.


Assuntos
Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Ósseas/secundário , Humanos , Transdução de Sinais
5.
J Cell Physiol ; 230(3): 578-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25160801

RESUMO

Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases.


Assuntos
Diferenciação Celular/genética , Megacariócitos/citologia , Osteoblastos/citologia , Transdução de Sinais/genética , Ciclo Celular/genética , Linhagem da Célula , Proliferação de Células/genética , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/genética , Megacariócitos/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
6.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946587

RESUMO

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Assuntos
Caquexia , Fibras Musculares Esqueléticas , Estresse Oxidativo , Sirtuína 1 , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Caquexia/prevenção & controle , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/complicações , Masculino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Linhagem Celular , Niacina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Neural Regen Res ; 18(2): 439-444, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900443

RESUMO

We recently demonstrated a repurposing beneficial effect of 4-aminopyridine (4-AP), a potassium channel blocker, on functional recovery and muscle atrophy after sciatic nerve crush injury in rodents. However, this effect of 4-AP is unknown in nerve transection, gap, and grafting models. To evaluate and compare the functional recovery, nerve morphology, and muscle atrophy, we used a novel stepwise nerve transection with gluing (STG), as well as 7-mm irreparable nerve gap (G-7/0) and 7-mm isografting in 5-mm gap (G-5/7) models in the absence and presence of 4-AP treatment. Following surgery, sciatic functional index was determined weekly to evaluate the direct in vivo global motor functional recovery. After 12 weeks, nerves were processed for whole-mount immunofluorescence imaging, and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber cross-sectional area and minimal Feret's diameter. Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model. 4-AP did not affect the sciatic functional index recovery in any model. Compared to STG, nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting. While muscle weight, cross-sectional area, and minimal Feret's diameter were significantly smaller in G-7/0 model compared with STG and G-5/7, 4-AP treatment significantly increased right TA muscle mass, cross-sectional area, and minimal Feret's diameter in G-7/0 model. These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap, and 4-AP exerts differential effects on functional recovery and muscle atrophy.

8.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333318

RESUMO

SUMMARY: Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFß release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance: TGFß is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFß causes several bone disorders and skeletal muscle weakness. Reducing excess TGFß release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.

9.
J Biol Chem ; 286(1): 216-22, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21081495

RESUMO

Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.


Assuntos
Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Benzamidas , Linhagem Celular Tumoral , Dano ao DNA , Técnicas de Inativação de Genes , Humanos , Mesilato de Imatinib , Camundongos , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/deficiência , Proteínas Proto-Oncogênicas c-abl/genética , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação/efeitos dos fármacos
10.
J Biol Chem ; 286(42): 36631-40, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21873427

RESUMO

The p53 family member, p73, has been characterized as a tumor suppressor and functions in a similar manner as p53 to induce cellular death. The phosphatase and tensin homolog (PTEN) can function as a dual specificity lipid/protein phosphatase. However, recent data have described multiple roles for nuclear PTEN independent of its lipid phosphatase activity. PTEN can directly or indirectly activate p53 to promote apoptosis. We examined whether PTEN would interact and regulate p73 independent of p53. Co-localization in the nucleus and complex formation of p73/PTEN were observed after DNA damage. Furthermore, we also demonstrate that p73α/PTEN proteins directly bind one another. Both overexpressed and endogenous p73-PTEN interactions were determined to be the strongest in the nuclear fraction after DNA damage, which suggested formation of a transcriptional complex. We employed chromatin immunoprecipitation (ChIP) and found that p73 and PTEN were associated with the PUMA promoter after genotoxic stress in TP53-null cells. We found that another p73 target, BAX, had an increased expression in the presence of p73 and PTEN. In addition, in virus-transduced cell lines stably expressing p73, PTEN, or both p73/PTEN, we found that the p73/PTEN cells were more sensitive to genotoxic stress and cellular death as measured by increased poly(ADP-ribose) polymerase cleavage and PUMA/Bax induction. Conversely, knockdown of PTEN dramatically reduced Bax and PUMA levels. Thus, a p73-PTEN protein complex is engaged to induce apoptosis independent of p53 in response to DNA damage.


Assuntos
Apoptose , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Transformada , Fragmentação do DNA , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
J Vis Exp ; (182)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467646

RESUMO

Transient gene expression modulation in murine skeletal muscle by plasmid electroporation is a useful tool for assessing normal and pathological physiology. Overexpression or knockdown of target genes enables investigators to manipulate individual molecular events and, thus, better understand the mechanisms that impact muscle mass, muscle metabolism, and contractility. In addition, electroporation of DNA plasmids that encode fluorescent tags allows investigators to measure changes in subcellular localization of proteins in skeletal muscle in vivo. A key functional assessment of skeletal muscle includes the measurement of muscle contractility. In this protocol, we demonstrate that whole muscle contractility studies are still possible after plasmid DNA injection, electroporation, and gene expression modulation. The goal of this instructional procedure is to demonstrate the step-by-step method of DNA plasmid electroporation into mouse skeletal muscle to facilitate uptake and expression in the myofibers of the tibialis anterior and extensor digitorum longus muscles, as well as to demonstrate that skeletal muscle contractility is not compromised by injection and electroporation.


Assuntos
Eletroporação , Técnicas de Transferência de Genes , Animais , DNA/genética , Eletroporação/métodos , Camundongos , Músculo Esquelético/metabolismo , Plasmídeos/genética
12.
J Cachexia Sarcopenia Muscle ; 12(6): 1597-1612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34664403

RESUMO

BACKGROUND: Chemotherapy is an essential treatment to combat solid tumours and mitigate metastasis. Chemotherapy causes side effects including muscle wasting and weakness. Regulated in Development and DNA Damage Response 1 (REDD1) is a stress-response protein that represses the mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), and its expression is increased in models of muscle wasting. The aim of this study was to determine if deletion of REDD1 is sufficient to attenuate chemotherapy-induced muscle wasting and weakness in mice. METHODS: C2C12 myotubes were treated with carboplatin, and changes in myotube diameter were measured. Protein synthesis was measured by puromycin incorporation, and REDD1 mRNA and protein expression were analysed in myotubes treated with carboplatin. Markers of mTORC1 signalling were measured by western blot. REDD1 global knockout mice and wild-type mice were treated with a single dose of carboplatin and euthanized 7 days later. Body weight, hindlimb muscle weights, forelimb grip strength, and extensor digitorum longus whole muscle contractility were measured in all groups. Thirty minutes prior to euthanasia, mice were injected with puromycin to measure puromycin incorporation in skeletal muscle. RESULTS: C2C12 myotube diameter was decreased at 24 (P = 0.0002) and 48 h (P < 0.0001) after carboplatin treatment. Puromycin incorporation was decreased in myotubes treated with carboplatin for 24 (P = 0.0068) and 48 h (P = 0.0008). REDD1 mRNA and protein expression were increased with carboplatin treatment (P = 0.0267 and P = 0.0015, respectively), and this was accompanied by decreased phosphorylation of Akt T308 (P < 0.0001) and S473 (P = 0.0006), p70S6K T389 (P = 0.0002), and 4E-binding protein 1 S65 (P = 0.0341), all markers of mTORC1 activity. REDD1 mRNA expression was increased in muscles from mice treated with carboplatin (P = 0.0295). Loss of REDD1 reduced carboplatin-induced body weight loss (P = 0.0013) and prevented muscle atrophy in mice. REDD1 deletion prevented carboplatin-induced decrease of protein synthesis (P = 0.7626) and prevented muscle weakness. CONCLUSIONS: Carboplatin caused loss of body weight, muscle atrophy, muscle weakness, and inhibition of protein synthesis. Loss of REDD1 attenuates muscle atrophy and weakness in mice treated with carboplatin. Our study illustrates the importance of REDD1 in the regulation of muscle mass with chemotherapy treatment and may be an attractive therapeutic target to combat cachexia.


Assuntos
Antineoplásicos , Fatores de Transcrição , Animais , Antineoplásicos/efeitos adversos , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Fatores de Transcrição/genética
13.
J Appl Physiol (1985) ; 131(6): 1718-1730, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672766

RESUMO

Cancer cachexia is a wasting disorder associated with advanced cancer that contributes to mortality. Cachexia is characterized by involuntary loss of body weight and muscle weakness that affects physical function. Regulated in DNA damage and development 1 (REDD1) is a stress-response protein that is transcriptionally upregulated in muscle during wasting conditions and inhibits mechanistic target of rapamycin complex 1 (mTORC1). C2C12 myotubes treated with Lewis lung carcinoma (LLC)-conditioned media increased REDD1 mRNA expression and decreased myotube diameter. To investigate the role of REDD1 in cancer cachexia, we inoculated 12-wk-old male wild-type or global REDD1 knockout (REDD1 KO) mice with LLC cells and euthanized 28 days later. Wild-type mice had increased skeletal muscle REDD1 expression, and REDD1 deletion prevented loss of body weight and lean tissue mass but not fat mass. We found that REDD1 deletion attenuated loss of individual muscle weights and loss of myofiber cross-sectional area. We measured markers of the Akt/mTORC1 pathway and found that, unlike wild-type mice, phosphorylation of both Akt and 4E-BP1 was maintained in the muscle of REDD1 KO mice after LLC inoculation, suggesting that loss of REDD1 is beneficial in maintaining mTORC1 activity in mice with cancer cachexia. We measured Foxo3a phosphorylation as a marker of the ubiquitin proteasome pathway and autophagy and found that REDD1 deletion prevented dephosphorylation of Foxo3a in muscles from cachectic mice. Our data provide evidence that REDD1 plays an important role in cancer cachexia through the regulation of both protein synthesis and protein degradation pathways.NEW & NOTEWORTHY Cancer cachexia is a debilitating and lethal consequence of many advanced cancers. REDD1, a negative regulator of mTORC1 activity, is an emerging target in cachexia. Our data show that skeletal muscle REDD1 expression is increased in LLC-induced cancer cachexia. Mice lacking REDD1 have attenuated skeletal muscle atrophy that is likely due to maintaining both protein synthesis and inhibiting protein degradation.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Animais , Caquexia/etiologia , Caquexia/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/patologia , Dano ao DNA , Masculino , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Transdução de Sinais
14.
Blood ; 112(2): 320-9, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339895

RESUMO

In vitro studies indicate that Cul4A ubiquitin ligases target for ubiquitin-mediated proteolysis regulators of cell-cycle progression, apoptosis, development, and DNA repair. In hematopoietic cell lines, studies by our group and others showed that Cul4A ligases regulate proliferation and differentiation in maturing myeloid and erythroid cells. In vivo, Cul4A-deficient embryos die in utero. Cul4A haploinsufficient mice are viable but have fewer erythroid and primitive myeloid progenitors. Yet, little more is known about Cul4A function in vivo. To examine Cul4A function in adults, we generated mice with interferon-inducible deletion of Cul4A. Cul4A deficiency resulted in DNA damage and apoptosis of rapidly dividing cells, and mutant mice died within 3 to 10 days after induction with dramatic atrophy of the intestinal villi, bone marrow, and spleen, and with hematopoietic failure. Cul4A deletion in vivo specifically increased cellular levels of the Cul4A ligase targets Cdt1 and p27(Kip1) but not other known targets. Bone marrow transplantation studies with Cul4A deletion in engrafted cells specifically isolated analysis of Cul4A function to hematopoietic cells and resulted in hematopoietic failure. These recipients died within 9 to 11 days, demonstrating that in hematopoietic cells, Cul4A is essential for survival.


Assuntos
Apoptose , Proteínas Culina/fisiologia , Hematopoese , Sistema Hematopoético/citologia , Animais , Proteínas de Ciclo Celular/análise , Sobrevivência Celular , Proteínas Culina/genética , Inibidor de Quinase Dependente de Ciclina p27/análise , Proteínas de Ligação a DNA/análise , Camundongos , Camundongos Knockout
15.
J Bone Miner Res ; 35(2): 368-381, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31614017

RESUMO

Carboplatin is a chemotherapy drug used to treat solid tumors but also causes bone loss and muscle atrophy and weakness. Bone loss contributes to muscle weakness through bone-muscle crosstalk, which is prevented with the bisphosphonate zoledronic acid (ZA). We treated mice with carboplatin in the presence or absence of ZA to assess the impact of bone resorption on muscle. Carboplatin caused loss of body weight, muscle mass, and bone mass, and also led to muscle weakness as early as 7 days after treatment. Mice treated with carboplatin and ZA lost body weight and muscle mass but did not lose bone mass. In addition, muscle function in mice treated with ZA was similar to control animals. We also used the anti-TGFß antibody (1D11) to prevent carboplatin-induced bone loss and showed similar results to ZA-treated mice. We found that atrogin-1 mRNA expression was increased in muscle from mice treated with carboplatin, which explained muscle atrophy. In mice treated with carboplatin for 1 or 3 days, we did not observe any bone or muscle loss, or muscle weakness. In addition, reduced caloric intake in the carboplatin treated mice did not cause loss of bone or muscle mass, or muscle weakness. Our results show that blocking carboplatin-induced bone resorption is sufficient to prevent skeletal muscle weakness and suggests another benefit to bone therapy beyond bone in patients receiving chemotherapy. © 2019 American Society for Bone and Mineral Research.


Assuntos
Músculo Esquelético , Animais , Conservadores da Densidade Óssea , Difosfonatos/farmacologia , Imidazóis/farmacologia , Camundongos , Ácido Zoledrônico/farmacologia
16.
J Bone Miner Res ; 35(10): 2049-2057, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32511780

RESUMO

Prolonged residence of mice in spaceflight is a scientifically robust and ethically ratified model of muscle atrophy caused by continued unloading. Under the Rodent Research Program of the National Aeronautics and Space Administration (NASA), we assayed the large-scale mRNA and metabolomic perturbations in the quadriceps of C57BL/6j male mice that lived in spaceflight (FLT) or on the ground (control or CTR) for approximately 4 weeks. The wet weights of the quadriceps were significantly reduced in FLT mice. Next-generation sequencing and untargeted mass spectroscopic assays interrogated the gene-metabolite landscape of the quadriceps. A majority of top-ranked differentially suppressed genes in FLT encoded proteins from the myosin or troponin families, suggesting sarcomere alterations in space. Significantly enriched gene-metabolite networks were found linked to sarcomeric integrity, immune fitness, and oxidative stress response; all inhibited in space as per in silico prediction. A significant loss of mitochondrial DNA copy numbers in FLT mice underlined the energy deprivation associated with spaceflight-induced stress. This hypothesis was reinforced by the transcriptomic sequencing-metabolomics integrative analysis that showed inhibited networks related to protein, lipid, and carbohydrate metabolism, and adenosine triphosphate (ATP) synthesis and hydrolysis. Finally, we discovered important upstream regulators, which could be targeted for next-generation therapeutic intervention for chronic disuse of the musculoskeletal system. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Assuntos
Atrofia Muscular , Músculo Quadríceps/patologia , Voo Espacial , Ausência de Peso , Animais , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Ausência de Peso/efeitos adversos
17.
Cell Metab ; 29(1): 6-8, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625309

RESUMO

Tumor cell interactions with the bone microenvironment are vital for the establishment and progression of bone metastases. Recently in Cancer Cell, Wang et al. (2018) showed that cells of the osteoblast lineage are critical for the delivery of calcium to tumor cells through gap junctions, pointing toward potential therapies for bone metastases.


Assuntos
Cálcio , Micrometástase de Neoplasia , Osso e Ossos , Conexinas , Junções Comunicantes , Humanos , Osteoblastos , Osteogênese , Microambiente Tumoral
18.
Artigo em Inglês | MEDLINE | ID: mdl-31032492

RESUMO

BACKGROUND: Chemotherapy used to treat malignancy can lead to loss of skeletal muscle mass and reduced force production, and can reduce bone volume in mice. We have shown that bone-muscle crosstalk is a key nexus in skeletal muscle function and bone homeostasis in osteolytic breast cancer bone metastases. Because chemotherapy has significant negative side effects on bone mass, and because bone loss can drive skeletal muscle weakness, we have examined the effects of chemotherapy on the musculoskeletal system in mice with breast cancer bone metastases. METHODS AND RESULTS: Six-week-old Female athymic nude mice were inoculated with 105 MDA-MB231 human breast cancer cells into the left ventricle and bone metastases were confirmed by X-ray. Mice were injected with carboplatin at a dose of 60mg/kg once per week starting 4 days after tumor inoculation. Skeletal muscle was collected for biochemical analysis and extensor digitorum longus (EDL) whole muscle contractility was measured. The femur and tibia bone parameters were assessed by microCT and tumor burden in bone was determined by histology. Healthy mice treated with carboplatin lose whole body weight and have reduced individual muscle weights (gastrocnemius, tibialis anterior (TA), and EDL), reduced trabecular bone volume (BV/TV), and reduced EDL function. Mice with MDA-MB-231 bone metastases treated with carboplatin lose body weight, and have reduced EDL function as healthy mice treated with carboplatin. Mice with MDA-MB-231 bone metastases plus carboplatin do have reduced proximal tibia BV/TV compared to carboplatin alone, but carboplatin does reduce tumor burden in bone. CONCLUSIONS: Our data shows that carboplatin treatment, aimed at reducing tumor burden, contributes to cachexia and trabecular bone loss. The muscle atrophy and weakness may occur through bone-muscle crosstalk and would lead to a feed-forward cycle of musculoskeletal degradation. Despite anti-tumor effects of chemotherapy, musculoskeletal impairment is still significant in mice with bone metastases.

19.
JBMR Plus ; 3(3): e10187, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30918923

RESUMO

Mobility in advanced cancer patients is a major health care concern and is often lost in advanced metastatic cancers. Erosion of mobility is a major component in determining quality of life but also starts a process of loss of muscle and bone mass that further devastates patients. In addition, treatment options become limited in these advanced cancer patients. Loss of bone and muscle occurs concomitantly. Advanced cancers that are metastatic to bone often lead to bone loss (osteolytic lesions) but may also lead to abnormal deposition of new bone (osteoblastic lesions). However, in both cases there is a disruption to normal bone remodeling and radiologic evidence of bone loss. Many antitumor therapies can also lead to loss of bone in cancer survivors. Bone loss releases cytokines (TGFß) stored in the mineralized matrix that can act on skeletal muscle and lead to weakness. Likewise, loss of skeletal muscle mass leads to reduced bone mass and quality via mechanical and endocrine signals. Collectively these interactions are termed bone-muscle cross-talk, which has garnered much attention recently as a prime target for musculoskeletal health. Pharmacological approaches as well as nutrition and exercise can improve muscle and bone but have fallen short in the context of advanced cancers and cachexia. This review highlights our current knowledge of these interventions and discusses the difficulties in treating severe musculoskeletal deficits with the emphasis on improving not only bone mass and muscle size but also functional outcomes. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

20.
Cancers (Basel) ; 11(4)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018508

RESUMO

Despite recent progress, chemotherapy remains the preferred treatment for cancer. We have shown a link between anticancer drugs and the development of cachexia, i.e., body wasting accompanied by muscle loss. The multi-kinase inhibitors (MKIs) regorafenib and sorafenib, used as second-line treatment for solid tumors, are frequently accompanied by several side effects, including loss of muscle mass and strength. In the present study we aimed to investigate the molecular mechanisms associated with the occurrence of muscle toxicities in in vivo conditions. Hence, we treated 8-week old healthy CD2F1 male mice with MKIs for up to six weeks and observed decreased skeletal and cardiac muscle mass, consistent with muscle weakness. Modulation of ERK1/2 and GSK3ß, as well as increased expression of markers of autophagy, previously associated with muscle atrophy conditions, were shown in skeletal muscle upon treatment with either drug. MKIs also promoted cardiac abnormalities consistent with reduced left ventricular mass, internal diameter, posterior wall thickness and stroke volume, despite unchanged overall function. Notably, different signaling pathways were affected in the heart, including reduced expression of mitochondrial proteins, and elevated AKT, GSK3ß, mTOR, MEK1/2 and ERK1/2 phosphorylation. Combined, our data demonstrate detrimental effects on skeletal and cardiac muscle in association with chronic administration of MKIs, although different mechanisms would seem to contribute to the cachectic phenotype in the two tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA