Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 171, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303179

RESUMO

BACKGROUND: Chickpea is one of the major legume crops being cultivated in the arid and semi-arid regions of Pakistan. It is mainly grown on the marginal areas where, terminal drought stress is one of the serious threats to its productivity. For defining the appropriate selection criteria for screening drought tolerant chickpea genotypes, present study was conducted. Distinct chickpea germplasm was collected from different pulses breeding institutes of Pakistan and evaluated for drought tolerance at germination and early seedling stages, furthermore, at late vegetative growth stages physiochemical traits and multi-environment yield performance were also tested. RESULTS: Chickpea genotypes under different environments, were significantly varied for different seedling traits, physio-chemical attributes and seed yield. Genotypes showing drought tolerance by performing better at an early seedling stages were not correspondingly high yielding. Screening for drought tolerance on seed yield basis is the most appropriate trait to develop the drought tolerant as well as high yielding chickpea genotypes. Results confirmed that traits of early growth stages were not reflecting the drought tolerance at terminal growth stages and also did not confer high yielding. NIAB-rain fed environment proved ideal in nature to screen the chickpea genotypes whereas, NIAB-lysimeter and Kalur Kot was least effective for selecting genotypes with high seed yield. Genotypes D0091-10, K010-10, D0085-10, K005-10, D0078-10, 08AG016, 08AG004, D0080-10, 09AG002, K002-10 and D0099-10 were high yielding and drought tolerant based on their performance across multiple hotspot environments. CONCLUSIONS: The selected genotypes are intended for further evaluation for varietal approval to recommend for general cultivation on farmer fields in drought hit areas of Pakistan. Among physio-biochemical traits, higher proline, glycine betain, RWC and CMS were reflecting the higher capability to tolerate the drought stress in chickpea. Drought sensitive genotypes (K0037-10, 2204, K0052-10, 09AG015, K0042-10, CM709/06, K0068-10, K004-10, K0026-10 and K0063-10) were also identified in present study which were resourceful asset for using as contrasting parents in hybridization programs. To our knowledge, this is first report using an integrated approach involving, physio-biochemical indices, and multi-environmental yield trials, for comparison, screening and selection of chickpea genotypes for drought tolerance.


Assuntos
Cicer/fisiologia , Secas , Genótipo , Seleção Genética/fisiologia , Estresse Fisiológico/genética , Cicer/genética , Cicer/crescimento & desenvolvimento , Meio Ambiente
2.
Front Plant Sci ; 11: 607869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679816

RESUMO

This study was planned with the purpose of evaluating the drought tolerance of advanced breeding lines of chickpea in natural field conditions. Two methods were employed to impose field conditions; the first: simulating drought stress by growing chickpea genotypes at five rainfed areas, with Faisalabad as the non-stressed control environment; and the second: planting chickpea genotypes in spring to simulate a drought stress environment, with winter-sowing serving as the non-stressed environment. Additive main effects and multiplicative interaction (AMMI) and generalized linear models (GLM) models were both found to be equally effective in extracting main effects in the rainfed experiment. Results demonstrated that environment influenced seed yield, number of primary and secondary branches, number of pods, and number of seeds most predominantly; however, genotype was the main source of variation in 100 seed weight and plant height. The GGE biplot showed that Faisalabad, Kallur Kot, and Bhakkar were contributing the most in the GEI, respectively, while Bahawalpur, Bhawana, and Karor were relatively stable environments, respectively. Faisalabad was the most, and Bhakkar the least productive in terms of seed yield. The best genotypes to grow in non-stressed environments were CH39/08, CH40/09, and CH15/11, whereas CH28/07 and CH39/08 were found suitable for both conditions. CH55/09 displayed the best performance in stress conditions only. The AMMI stability and drought-tolerance indices enabled us to select genotypes with differential performance in both conditions. It is therefore concluded that the spring-sown experiment revealed a high-grade drought stress imposition on plants, and that the genotypes selected by both methods shared quite similar rankings, and also that manually computed drought-tolerance indices are also comparable for usage for better genotypic selections. This study could provide sufficient evidence for using the aforementioned as drought-tolerance evaluation methods, especially for countries and research organizations who have limited resources and funding for conducting multilocation trials, and performing sophisticated analyses on expensive software.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA