Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 15: 1046-1060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164942

RESUMO

Galectins are carbohydrate recognition proteins that bind carbohydrates containing galactose and are involved in cell signaling and cellular interactions, involving them in several diseases. We present the synthesis of (aryltriazolyl)methyl galactopyranoside galectin inhibitors using a highly diastereoselective hydroboration of C1-exo-methylene pyranosides giving inhibitors with fourfold or better selectivity for galectin-1 over galectin-3, -4C (C-terminal CRD), -4N (N-terminal CRD), -7, -8C, -8N, -9C, and -9N and dissociation constants down to 170 µM.

2.
iScience ; 27(4): 109418, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544571

RESUMO

Lignin is an abundant polyaromatic polymer with a wide range of potential future uses. However, the conversion of lignin into valuable products comes at a cost, and medium- to high-value applications are thus appropriate. Two examples of these are polymers (e.g., as fibers, plasticizers, or additives) and flow batteries (e.g., as redox species). Both of these areas would benefit from lignin-derived molecules with potentially low molecular weight and high (electro)chemical functionality. A promising route to obtain these molecules is oxidative lignin depolymerization, as it enables the formation of targeted compounds with multiple functionalities. An application with high potential in the production of plastics is the synthesis of new sustainable polymers. Employing organic molecules, such as quinones and heterocycles, would constitute an important step toward the sustainability of aqueous flow batteries, and lignin and its derivatives are emerging as redox species, mainly due to their low cost and renewability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA