Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L65-L78, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651968

RESUMO

Perimenstrual worsening of asthma occurs in up to 40% of women with asthma, leading to increased acute exacerbations requiring clinical care. The role of sex hormones during these times remains unclear. In the current study, we used a translational approach to determine whether progesterone exacerbates allergic inflammation in the traditional chicken egg ovalbumin (OVA) model in BALB/c mice. Simultaneously, we used peripheral blood mononuclear cells (PBMC) from healthy human donors to assess the effects of progesterone on circulating group 2 innate lymphoid cells (ILC2). Briefly, lungs of ovariectomized (OVX) or sham-operated female (F-Sham) controls were implanted with a progesterone (P4, 25 mg) (OVX-P4) or placebo pellet (OVX-Placebo), followed by sensitization and challenge with ovalbumin (OVA). Progesterone increased total inflammatory histologic scores, increased hyper-responsiveness to methacholine (MCh), increased select chemokines in the bronchoalveolar lavage (BAL) and serum, and increased ILC2 and neutrophil numbers, along the airways compared with F-Sham-OVA and OVX-Placebo-OVA animals. Lung ILC2 were sorted from F-Sham-OVA, OVX-Placebo-OVA and OVX-P4-OVA treated animals and stimulated with IL-33. OVX-P4-OVA lung ILC2 were more responsive to interleukin 33 (IL-33) compared with F-Sham-OVA treated, producing more IL-13 and chemokines following IL-33 stimulation. We confirmed the expression of the progesterone receptor (PR) on human ILC2, and showed that P4 + IL-33 stimulation also increased IL-13 and chemokine production from human ILC2. We establish that murine ILC2 are capable of responding to P4 and thereby contribute to allergic inflammation in the lung. We confirmed that human ILC2 are also hyper-responsive to P4 and IL-33 and likely contribute to airway exacerbations following allergen exposures in asthmatic women with increased symptoms around the time of menstruation.NEW & NOTEWORTHY There is a strong association between female biological sex and severe asthma. We investigated the allergic immune response, lung pathology, and airway mechanics in the well-described chicken egg ovalbumin (OVA) model with steady levels of progesterone delivered throughout the treatment period. We found that progesterone enhances the activation of mouse group 2 innate lymphoid cells (ILC2). Human ILC2 are also hyper-responsive to progesterone and interleukin 33 (IL-33), and likely contribute to airway exacerbations following allergen exposures in women with asthma.


Assuntos
Asma , Pulmão , Linfócitos , Camundongos Endogâmicos BALB C , Ovalbumina , Progesterona , Progesterona/farmacologia , Animais , Feminino , Linfócitos/imunologia , Linfócitos/metabolismo , Humanos , Asma/imunologia , Asma/patologia , Asma/metabolismo , Camundongos , Ovalbumina/imunologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Imunidade Inata/efeitos dos fármacos , Interleucina-33/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Hipersensibilidade/metabolismo , Inflamação/patologia , Inflamação/imunologia , Inflamação/metabolismo , Modelos Animais de Doenças
2.
Respir Res ; 24(1): 162, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330506

RESUMO

Exposure to e-cigarette vapors alters important biologic processes including phagocytosis, lipid metabolism, and cytokine activity in the airways and alveolar spaces. Little is known about the biologic mechanisms underpinning the conversion to e-cigarette, or vaping, product use-associated lung injury (EVALI) from normal e-cigarette use in otherwise healthy individuals. We compared cell populations and inflammatory immune populations from bronchoalveolar lavage fluid in individuals with EVALI to e-cigarette users without respiratory disease and healthy controls and found that e-cigarette users with EVALI demonstrate a neutrophilic inflammation with alveolar macrophages skewed towards inflammatory (M1) phenotype and cytokine profile. Comparatively, e-cigarette users without EVALI demonstrate lower inflammatory cytokine production and express features associated with a reparative (M2) phenotype. These data indicate macrophage-specific changes are occurring in e-cigarette users who develop EVALI.


Assuntos
Produtos Biológicos , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Humanos , Macrófagos Alveolares , Fenótipo , Citocinas
3.
Am J Pathol ; 191(10): 1732-1742, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186073

RESUMO

Alcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-ß (TGF-ß) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa. It is hypothesized that MAA-adducted lung protein increases TGF-ß, preventing expression of epithelial cell pIgR and decreasing sIgA. Cigarette smoke and alcohol co-exposure on sIgA and TGF-ß in human bronchoalveolar lavage fluid and in mice instilled with MAA-adducted surfactant protein D (SPD-MAA) were studied herein. Human bronchial epithelial cells (HBECs) and mouse tracheal epithelial cells were treated with SPD-MAA and sIgA and TGF-ß was measured. Decreased sIgA and increased TGF-ß were observed in bronchoalveolar lavage from combined alcohol and smoking groups in humans and mice. CD204 (MAA receptor) knockout mice showed no changes in sIgA. SPD-MAA decreased pIgR in HBECs. Conversely, SPD-MAA stimulated TGF-ß release in both HBECs and mouse tracheal epithelial cells, but not in CD204 knockout mice. SPD-MAA stimulated TGF-ß in alveolar macrophage cells. These data show that MAA-adducted surfactant protein stimulates lung epithelial cell TGF-ß, down-regulates pIgR, and decreases sIgA transcytosis. These data provide a mechanism for the decreased levels of sIgA observed in smokers who misuse alcohol.


Assuntos
Acetaldeído/metabolismo , Alcoolismo/complicações , Epitélio/metabolismo , Imunoglobulina A/metabolismo , Pulmão/metabolismo , Malondialdeído/metabolismo , Fumantes , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Etanol , Humanos , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Fumar/efeitos adversos , Transcitose , Fator de Crescimento Transformador beta/metabolismo
4.
Respir Res ; 22(1): 206, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266437

RESUMO

BACKGROUND: Respiratory viral infections are one of the leading causes of need for emergency care and hospitalizations in asthmatic individuals, and airway-secreted cytokines are released within hours of viral infection to initiate these exacerbations. IL-33, specifically, contributes to these allergic exacerbations by amplifying type 2 inflammation. We hypothesized that blocking IL-33 in RSV-induced exacerbation would significantly reduce allergic inflammation. METHODS: Sensitized BALB/c mice were challenged with aerosolized ovalbumin (OVA) to establish allergic inflammation, followed by RSV-A2 infection to yield four treatment groups: saline only (Saline), RSV-infected alone (RSV), OVA alone (OVA), and OVA-treated with RSV infection (OVA-RSV). Lung outcomes included lung mRNA and protein markers of allergic inflammation, histology for mucus cell metaplasia and lung immune cell influx by cytospin and flow cytometry. RESULTS: While thymic stromal lymphopoietin (TSLP) and IL-33 were detected 6 h after RSV infection in the OVA-RSV mice, IL-23 protein was uniquely upregulated in RSV-infected mice alone. OVA-RSV animals varied from RSV- or OVA-treated mice as they had increased lung eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2) and group 3 innate lymphoid cells (ILC3) detectable as early as 6 h after RSV infection. Neutralized IL-33 significantly reduced ILC2 and eosinophils, and the prototypical allergic proteins, IL-5, IL-13, CCL17 and CCL22 in OVA-RSV mice. Numbers of neutrophils and ILC3 were also reduced with anti-IL-33 treatment in both RSV and OVA-RSV treated animals as well. CONCLUSIONS: Taken together, our findings indicate a broad reduction in allergic-proinflammatory events mediated by IL-33 neutralization in RSV-induced asthma exacerbation.


Assuntos
Asma/metabolismo , Asma/virologia , Interleucina-33/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios , Animais , Asma/induzido quimicamente , Asma/imunologia , Feminino , Interleucina-33/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Infecções por Vírus Respiratório Sincicial/imunologia
6.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L334-L347, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358438

RESUMO

Inflammation from airborne microbes can overwhelm compensatory mucociliary clearance mechanisms, leading to mucous cell metaplasia. Toll-like receptor (TLR) activation via myeloid differentiation factor 88 (MyD88) signaling is central to pathogen responses. We have previously shown that agricultural organic dust extract (ODE), with abundant microbial component diversity, activates TLR-induced airway inflammation. With the use of an established model, C57BL/6J wild-type (WT) and global MyD88 knockout (KO) mice were treated with intranasal inhalation of ODE or saline, daily for 1 wk. ODE primarily increased mucin (Muc)5ac levels relative to Muc5b. Compared with ODE-challenged WT mice, ODE-challenged, MyD88-deficient mice demonstrated significantly increased Muc5ac immunostaining, protein levels by immunoblot, and expression by quantitative PCR. The enhanced Muc5ac levels in MyD88-deficient mice were not explained by differences in the differentiation program of airway secretory cells in naïve mice. Increased Muc5ac levels in MyD88-deficient mice were also not explained by augmented inflammation, IL-17A, or neutrophil elastase levels. Furthermore, the enhanced airway mucins in the MyD88-deficient mice were not due to defective secretion, as the mucin secretory capacity of MyD88-KO mice remained intact. Finally, ODE-induced Muc5ac levels were enhanced in MyD88-deficient airway epithelial cells in vitro. In conclusion, MyD88 deficiency enhances airway mucous cell metaplasia under environments with high TLR activation.


Assuntos
Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Exposição por Inalação , Camundongos Endogâmicos C57BL , Mucina-5AC/genética
7.
Respir Res ; 20(1): 51, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845921

RESUMO

Agriculture exposures are associated with reducing the risk of allergy and asthma in early life; yet, repeated exposures later in life are associated with chronic bronchitis and obstructive pulmonary diseases. The objective of this study was to investigate the airway inflammatory response to organic dust extract (ODE) in mice with established ovalbumin (OVA)-induced experimental asthma. C57BL/6 mice were either OVA sensitized/aerosol-exposed or saline (Sal) sensitized/aerosol-challenged. Both groups were then subsequently challenged once with intranasal saline or swine confinement ODE to obtain 4 treatment groups of Sal-Sal, Sal-ODE, OVA-Sal, and OVA-ODE. Airway hyper-responsiveness (AHR) to methacholine, bronchiolar lavage fluid, lung tissues, and serum were collected. Intranasal inhalation of ODE in OVA-treated (asthmatic) mice (OVA-ODE) increased AHR and total cellular influx marked by elevated neutrophil and eosinophil counts. Flow cytometry analysis further demonstrated that populations of CD11chi dendritic cells (DC), CD3+ T cells, CD19+ B cells, and NKp46+ group 3 innate lymphoid cells (ILC3) were increased in lavage fluid of OVA-ODE mice as compared to ODE or OVA alone. Alveolar macrophages, DC, and T cells were significantly increased with co-exposure to OVA-ODE as compared to OVA alone. Lung ILC2 and ILC3 were only increased in OVA-Sal mice. Cytokine/chemokine levels varied with exposure to OVA-ODE reflecting an additive mixture of the pro- and allergic-inflammatory profiles. Collectively, ODE increased airway inflammatory cells and chemotactic mediator release in allergic (OVA) sensitized mice to suggest that persons with allergy/asthma be identified and warned prior to the occupational exposure of potentially worsening airway disease.


Assuntos
Hiper-Reatividade Brônquica/induzido quimicamente , Poeira , Exposição por Inalação/efeitos adversos , Agricultura Orgânica , Ovalbumina/toxicidade , Animais , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Galinhas , Poeira/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Suínos
8.
J Biol Chem ; 291(48): 24922-24930, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27742835

RESUMO

Lung M2 macrophages are regulators of airway inflammation, associated with poor lung function in allergic asthma. Previously, we demonstrated that IL-4-induced M2 gene expression correlated with tyrosine phosphorylation of the insulin receptor substrate-2 (IRS-2) in macrophages. We hypothesized that negative regulation of IRS-2 activity after IL-4 stimulation is dependent upon serine phosphorylation of IRS-2. Herein, we describe an inverse relationship between tyrosine phosphorylation (Tyr(P)) and serine phosphorylation (Ser(P)) of IRS-2 after IL-4 stimulation. Inhibiting serine phosphatase activity increased Ser(P)-IRS-2 and decreased Tyr(P)-IRS-2 leading to reduced M2 gene expression (CD200R, CCL22, MMP12, and TGM2). We found that inhibition of p70S6K, downstream of TORC1, resulted in diminished Ser(P)-IRS-2 and prolonged Tyr(P)-IRS-2 as well. Inhibition of p70S6K increased expression of CD200R and CCL22 indicating that p70S6K negatively regulates some, but not all, human M2 genes. Knocking down GRB10, another negative regulatory protein downstream of TORC1, enhanced both Tyr(P)-IRS-2 and increased expression of all four M2 genes. Furthermore, GRB10 associated with IRS-2, NEDD4.2 (an E3-ubiquitin ligase), IL-4Rα, and γC after IL-4 stimulation. Both IL-4Rα and γC were ubiquitinated after 30 min of IL-4 treatment, suggesting that GRB10 may regulate degradation of the IL-4 receptor-signaling complex through interactions with NEDD4.2. Taken together, these data highlight two novel regulatory proteins that could be therapeutically manipulated to limit IL-4-induced IRS-2 signaling and polarization of M2 macrophages in allergic inflammation.


Assuntos
Proteína Adaptadora GRB10/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteína Adaptadora GRB10/genética , Regulação da Expressão Gênica/genética , Humanos , Hipersensibilidade/genética , Hipersensibilidade/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Interleucina-4/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Ubiquitina-Proteína Ligases Nedd4 , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/genética , Células U937 , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Respir Res ; 18(1): 214, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273051

RESUMO

BACKGROUND: Agriculture organic dust exposures induce lung disease with lymphoid aggregates comprised of both T and B cells. The precise role of B cells in mediating lung inflammation is unknown, yet might be relevant given the emerging role of B cells in obstructive pulmonary disease and associated autoimmunity. METHODS: Using an established animal model, C57BL/6 wild-type (WT) and B-cell receptor (BCR) knock-out (KO) mice were repetitively treated with intranasal inhalation of swine confinement organic dust extract (ODE) daily for 3 weeks and lavage fluid, lung tissues, and serum were collected. RESULTS: ODE-induced neutrophil influx in lavage fluid was not reduced in BCR KO animals, but there was reduction in TNF-α, IL-6, CXCL1, and CXCL2 release. ODE-induced lymphoid aggregates failed to develop in BCR KO mice. There was a decrease in ODE-induced lung tissue CD11c+CD11b+ exudative macrophages and compensatory increase in CD8+ T cells in lavage fluid of BCR KO animals. Compared to saline, there was an expansion of conventional B2-, innate B1 (CD19+CD11b+CD5+/-)-, and memory (CD19+CD273+/-CD73+/-) B cells following ODE exposure in WT mice. Autoreactive responses including serum IgG anti-citrullinated protein antibody (ACPA) and anti-malondialdehyde-acetaldehyde (MAA) autoantibodies were increased in ODE treated WT mice as compared to saline control. B cells and serum immunoglobulins were not detected in BCR KO animals. CONCLUSIONS: Lung tissue staining for citrullinated and MAA modified proteins were increased in ODE-treated WT animals, but not BCR KO mice. These studies show that agriculture organic dust induced lung inflammation is dependent upon B cells, and dust exposure induces an autoreactive response.


Assuntos
Linfócitos B/fisiologia , Poeira , Exposição por Inalação/efeitos adversos , Pneumonia/patologia , Animais , Linfócitos B/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/etiologia , Pneumonia/imunologia , Suínos
10.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543837

RESUMO

SARS-CoV-2 infection has claimed just over 1.1 million lives in the US since 2020. Globally, the SARS-CoV-2 respiratory infection spread to 771 million people and caused mortality in 6.9 million individuals to date. Much of the early literature showed that SARS-CoV-2 immunity was defective in the early stages of the pandemic, leading to heightened and, sometimes, chronic inflammatory responses in the lungs. This lung-associated 'cytokine storm' or 'cytokine release syndrome' led to the need for oxygen supplementation, respiratory distress syndrome, and mechanical ventilation in a relatively high number of people. In this study, we evaluated circulating PBMC from non-hospitalized, male and female, COVID-19+ individuals over the course of infection, from the day of diagnosis (day 0) to one-week post diagnosis (day 7), and finally 4 weeks after diagnosis (day 28). In our early studies, we included hospitalized and critically care patient PBMC; however, most of these individuals were lymphopenic, which limited our assessments of their immune integrity. We chose a panel of 30 interferon-stimulated genes (ISG) to evaluate by PCR and completed flow analysis for immune populations present in those PBMC. Lastly, we assessed immune activation by stimulating PBMC with common TLR ligands. We identified changes in innate cells, primarily the innate lymphoid cells (ILC, NK cells) and adaptive immune cells (CD4+ and CD8+ T cells) over this time course of infection. We found that the TLR-7 agonist, Resiquimod, and the TLR-4 ligand, LPS, induced significantly better IFNα and IFNγ responses in the later phase (day 28) of SARS-CoV-2 infection in those non-hospitalized COVID-19+ individuals as compared to early infection (day 0 and day 7). We concluded that TLR-7 and TLR-4 agonists may be effective adjuvants in COVID-19 vaccines for mounting immunity that is long-lasting against SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Masculino , Feminino , SARS-CoV-2/genética , Pandemias , Imunidade Inata , Vacinas contra COVID-19 , Receptor 4 Toll-Like/genética , Leucócitos Mononucleares , Receptor 7 Toll-Like , Linfócitos , Interferons , Síndrome da Liberação de Citocina
11.
Cell Rep ; 43(7): 114365, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909363

RESUMO

Here, we examine how prenatal inflammation shapes tissue function and immunity in the lung by reprogramming tissue-resident immune cells from early development. Maternal, but not fetal, type I interferon-mediated inflammation provokes expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produce increased IL-5 and IL-13 and are associated with acute Th2 bias, decreased Tregs, and persistent lung eosinophilia into adulthood. ILC2 hyperactivation is recapitulated by adoptive transfer of fetal liver precursors following prenatal inflammation, indicative of developmental programming at the fetal progenitor level. Reprogrammed ILC2 hyperactivation and subsequent lung immune remodeling, including persistent eosinophilia, is concomitant with worsened histopathology and increased airway dysfunction equivalent to papain exposure, indicating increased asthma susceptibility in offspring. Our data elucidate a mechanism by which early-life inflammation results in increased asthma susceptibility in the presence of hyperactivated ILC2s that drive persistent changes to lung immunity during perinatal development.

12.
Curr Opin Organ Transplant ; 18(4): 393-401, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23838643

RESUMO

PURPOSE OF REVIEW: The mechanisms of tolerance induction and maintenance remain incompletely understood and have yet to be translated to clinical practice. Advances in imaging techniques have allowed precise examination of cell interactions in the lymph node, often in real time. Herein we review evidence that lymph node structure is dynamic and controls the character of the immune response in a multistep, multiplayer dance. T-cell responses in particular can be initiated or influenced in regions beyond the canonical T-cell zone. We propose that the cortical ridge is one such region required for induction and maintenance of tolerance. RECENT FINDINGS: Lymph node domains are more complex than T-cell and B-cell zones. Different domains are important for different types of immune responses. These domains are in part defined by dynamic, malleable physical structures that guide cell interactions and influence immune outcomes. SUMMARY: Further probing as to how lymph node stromal cells and fibers interact with and determine the character of immune responses should yield fundamental insights into tolerance and immunity. Manipulation of lymph node structure and associated unique cell types and molecules may allow therapeutic interventions in the tolerogenic process.


Assuntos
Linfócitos B/imunologia , Tolerância Imunológica/fisiologia , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Comunicação Celular , Humanos
13.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045298

RESUMO

Allergic asthma is a chronic respiratory disease that initiates in early life, but causal mechanisms are poorly understood. Here we examined how prenatal inflammation shapes allergic asthma susceptibility by reprogramming lung immunity from early development. Induction of Type I interferon-mediated inflammation during development provoked expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produced increased IL-5 and IL-13, and were associated with acute Th2 bias, eosinophilia, and decreased Tregs in the lung. The hyperactive ILC2 phenotype was recapitulated by adoptive transfer of a fetal liver precursor following exposure to prenatal inflammation, indicative of developmental programming. Programming of ILC2 function and subsequent lung immune remodeling by prenatal inflammation led to airway dysfunction at baseline and in response to papain, indicating increased asthma susceptibility. Our data provide a link by which developmental programming of progenitors by early-life inflammation drives lung immune remodeling and asthma susceptibility through hyperactivation of lung-resident ILC2s. One Sentence Summary: Prenatal inflammation programs asthma susceptibility by inducing the production of hyperactivated ILC2s in the developing lung.

14.
Biol Sex Differ ; 14(1): 2, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609358

RESUMO

RATIONALE: Asthma is a chronic airway condition that occurs more often in women than men during reproductive years. Population studies have collectively shown that long-term use of oral contraceptives decreased the onset of asthma in women of reproductive age. In the current study, we hypothesized that steady-state levels of estrogen would reduce airway inflammation and airway hyperresponsiveness to methacholine challenge. METHODS: Ovariectomized BALB/c mice (Ovx) were implanted with subcutaneous hormone pellets (estrogen, OVX-E2) that deliver consistent levels of estrogen [68 ± 2 pg/mL], or placebo pellets (OVX-Placebo), followed by ovalbumin sensitization and challenge. In conjunction with methacholine challenge, immune phenotyping was performed to correlate inflammatory proteins and immune populations with better or worse pulmonary outcomes measured by invasive pulmonary mechanics techniques. RESULTS: Histologic analysis showed an increase in total cell infiltration and mucus staining around the airways leading to an increased inflammatory score in ovarectomized (OVX) animals with steady-state estrogen pellets (OVX-E2-OVA) as compared to other groups including female-sham operated (F-INTACT-OVA) and OVX implanted with a placebo pellet (OVX-Pl-OVA). Airway resistance (Rrs) and lung elastance (Ers) were increased in OVX-E2-OVA in comparison to F-INTACT-OVA following aerosolized intratracheal methacholine challenges. Immune phenotyping revealed that steady-state estrogen reduced CD3+ T cells, CD19+ B cells, ILC2 and eosinophils in the BAL across all experiments. While these commonly described allergic cells were reduced in the BAL, or airways, we found no changes in neutrophils, CD3+ T cells or CD19+ B cells in the remaining lung tissue. Similarly, inflammatory cytokines (IL-5 and IL-13) were also decreased in OVX-E2-OVA-treated animals in comparison to Female-INTACT-OVA mice in the BAL, but in the lung tissue IL-5, IL-13 and IL-33 were comparable in OVX-E2-OVA and F-INTACT OVA mice. ILC2 were sorted from the lungs and stimulated with exogenous IL-33. These ILC2 had reduced cytokine and chemokine expression when they were isolated from OVX-E2-OVA animals, indicating that steady-state estrogen suppresses IL-33-mediated activation of ILC2. CONCLUSIONS: Therapeutically targeting estrogen receptors may have a limiting effect on eosinophils, ILC2 and potentially other immune populations that may improve asthma symptoms in those females that experience perimenstrual worsening of asthma, with the caveat, that long-term use of estrogens or hormone receptor modulators may be detrimental to the lung microenvironment over time.


Assuntos
Asma , Interleucina-33 , Feminino , Animais , Camundongos , Interleucina-33/uso terapêutico , Estradiol/farmacologia , Estradiol/uso terapêutico , Imunidade Inata , Interleucina-13/uso terapêutico , Cloreto de Metacolina/farmacologia , Cloreto de Metacolina/uso terapêutico , Alérgenos/uso terapêutico , Resistência das Vias Respiratórias , Interleucina-5/uso terapêutico , Líquido da Lavagem Broncoalveolar , Linfócitos/metabolismo , Linfócitos/patologia , Pulmão/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Citocinas , Estrogênios/uso terapêutico
16.
Front Allergy ; 3: 1062412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506643

RESUMO

Asthmatic women tend to develop severe airway disease in their reproductive years, and 30%-40% of asthmatic women have peri-menstrual worsening of asthma symptoms. This indicates that fluctuations in ovarian hormones are involved in advancement of asthmatic disease and exacerbation of symptoms. Group 2 innate lymphoid cells, or ILC2, are readily detected in allergic conditions, such as rhinosinusitis, in individuals that develop nasal polyps do to allergen exposures, and in allergic asthma. ILC2 are airway localized immune cells activated by IL-33, an innate cytokine that perpetuates allergic inflammation by driving the production of IL-5 and IL-13. We have previously shown that ILC2 are highly activated in naïve and ovalbumin (OVA) challenged, female BALB/c mice in comparison to male mice following stimulation with IL-33. Here, we investigated the effect of steady-state ovarian hormones on ILC2 and the NF-κB signaling pathway following OVA sensitization and challenge. We found that estrogen-treated ovariectomized mice (OVX-E2) that had been challenged with OVA had reduced IL-5 and IL-13 production by lung ILC2 as compared to lung ILC2 isolated from intact male and female sham-operated controls that had been treated with OVA. ILC2 were isolated from untreated animals and co-cultured ex vivo with and without estrogen plus IL-33. Those estrogen-treated ILC2 similarly produced less IL-5 and IL-13 in comparison to untreated, and had reduced NF-κB activation. Single-cell RNA sequencing showed that 120 genes were differentially expressed in male and female ILC2, and Nfkb1 was found among top-ranked regulatory interactions. Together, these results provide new insight into the suppressive effect of estrogen on ILC2 which may be protective in female asthmatics. Understanding further how estrogen modulates ILC2 may provide therapeutic targets for the treatment of allergic diseases.

17.
Open Forum Infect Dis ; 8(6): ofab237, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189172

RESUMO

BACKGROUND: Pneumonia and diarrhea are among the leading causes of death worldwide, and epidemiological studies have demonstrated that diarrhea is associated with an increased risk of subsequent pneumonia. Our aim was to determine the impact of intestinal infection on innate immune responses in the lung. METHODS: Using a mouse model of intestinal infection by Salmonella enterica serovar Typhimurium (S. Typhimurium [ST]), we investigated associations between gastrointestinal infections and lung innate immune responses to bacterial (Klebsiella pneumoniae) challenge. RESULTS: We found alterations in frequencies of innate immune cells in the lungs of intestinally infected mice compared with uninfected mice. On subsequent challenge with K. pneumoniae, we found that mice with prior intestinal infection have higher lung bacterial burden and inflammation, increased neutrophil margination, and neutrophil extracellular traps, but lower overall numbers of neutrophils, compared with mice without prior intestinal infection. Total numbers of dendritic cells, innate-like T cells, and natural killer cells were not different between mice with and without prior intestinal infection. CONCLUSIONS: Together, these results suggest that intestinal infection impacts lung innate immune responses, most notably neutrophil characteristics, potentially resulting in increased susceptibility to secondary pneumonia.

18.
Physiol Rep ; 9(4): e14761, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33625796

RESUMO

COVID-19 causes severe disease with poor outcomes. We tested the hypothesis that early SARS-CoV-2 viral infection disrupts innate immune responses. These changes may be important for understanding subsequent clinical outcomes. We obtained residual nasopharyngeal swab samples from individuals who requested COVID-19 testing for symptoms at drive-through COVID-19 clinical testing sites operated by the University of Utah. We applied multiplex immunoassays, real-time polymerase chain reaction assays and quantitative proteomics to 20 virus-positive and 20 virus-negative samples. ACE-2 transcripts increased with infection (OR =17.4, 95% CI [CI] =4.78-63.8) and increasing viral N1 protein transcript load (OR =1.16, CI =1.10-1.23). Transcripts for two interferons (IFN) were elevated, IFN-λ1 (OR =71, CI =7.07-713) and IFN-λ2 (OR =40.2, CI =3.86-419), and closely associated with viral N1 transcripts (OR =1.35, CI =1.23-1.49 and OR =1.33 CI =1.20-1.47, respectively). Only transcripts for IP-10 were increased among systemic inflammatory cytokines that we examined (OR =131, CI =1.01-2620). We found widespread discrepancies between transcription and translation. IFN proteins were unchanged or decreased in infected samples (IFN-γ OR =0.90 CI =0.33-0.79, IFN-λ2,3 OR =0.60 CI =0.48-0.74) suggesting viral-induced shut-off of host antiviral protein responses. However, proteins for IP-10 (OR =3.74 CI =2.07-6.77) and several interferon-stimulated genes (ISG) increased with viral load (BST-1 OR =25.1, CI =3.33-188; IFIT1 OR =19.5, CI =4.25-89.2; IFIT3 OR =245, CI =15-4020; MX-1 OR =3.33, CI =1.44-7.70). Older age was associated with substantial modifications of some effects. Ambulatory symptomatic patients had an innate immune response with SARS-CoV-2 infection characterized by elevated IFN, proinflammatory cytokine and ISG transcripts, but there is evidence of a viral-induced host shut-off of antiviral responses. Our findings may characterize the disrupted immune landscape common in patients with early disease.


Assuntos
COVID-19/imunologia , Imunidade Inata/imunologia , Doenças Nasofaríngeas/virologia , SARS-CoV-2/imunologia , Carga Viral/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Nasofaríngeas/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Fatores Sexuais , Adulto Jovem
19.
J Vis Exp ; (151)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31589207

RESUMO

Herein, we present an efficient method that can be executed with basic laboratory skills and materials to assess lymphocyte chemokinetic movement in an ex vivo transmigration system. Group 2 innate lymphoid cells (ILC2) and CD4+ T helper cells were isolated from spleens and lungs of chicken egg ovalbumin (OVA)-challenged BALB/c mice. We confirmed the expression of CCR4 on both CD4+ T cells and ILC2, comparatively. CCL17 and CCL22 are the known ligands for CCR4; therefore, using this ex vivo transmigration method we examined CCL17- and CCL22-induced movement of CCR4+ lymphocytes. To establish chemokine gradients, CCL17 and CCL22 were placed in the bottom chamber of the transmigration system. Isolated lymphocytes were then added to top chambers and over a 48 h period the lymphocytes actively migrated through 3 µm pores towards the chemokine in the bottom chamber. This is an effective system for determining the chemokinetics of lymphocytes, but, understandably, does not mimic the complexities found in the in vivo organ microenvironments. This is one limitation of the method that can be overcome by the addition of in situ imaging of the organ and lymphocytes under study. In contrast, the advantage of this method is that is can be performed by an entry-level technician at a much more cost-effective rate than live imaging. As therapeutic compounds become available to enhance migration, as in the case of tumor infiltrating cytotoxic immune cells, or to inhibit migration, perhaps in the case of autoimmune diseases where immunopathology is of concern, this method can be used as a screening tool. In general, the method is effective if the chemokine of interest is consistently generating chemokinetics at a statistically higher level than the media control. In such cases, the degree of inhibition/enhancement by a given compound can be determined as well.


Assuntos
Quimiotaxia de Leucócito , Linfócitos , Animais , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Feminino , Técnicas In Vitro , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Linfócitos T Auxiliares-Indutores/metabolismo
20.
Alcohol ; 80: 25-32, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30291948

RESUMO

Matrix metalloproteinases are important for proper airway matrix structure and wound healing. These enzymes are also implicated in many airway diseases. Previously, chronic ethanol consumption was shown to prolong inflammation and delay viral clearance in respiratory syncytial virus (RSV)-infected mice. We hypothesize that alcohol alters anti-viral immunity by disrupting immune cell chemotaxis in the lung. BALB/c mice were randomly selected to consume 18% alcohol ad libitum for 8 weeks prior to infection with RSV-2A. Bronchoalveolar lavage (BAL) cell populations were measured by flow cytometry, and chemokines were detected by Western blot or ELISA. MMP-9 levels were determined by polymerase chain reaction (PCR) in mouse lungs and in BAL fluid by ELISA. T cells were acquired from the spleens of water-fed, non-infected control mice (CTRL); alcohol-fed, non-infected (ETOH); water-fed, RSV-infected (RSV); or ethanol-fed, RSV-infected (ETOH-RSV) 4 days after RSV infection. T cells were placed in a transmigration system where chemokines had been treated with and without activated MMP-9. Lymphocyte recruitment was significantly reduced in the BAL 4 days after RSV infection in ETOH-RSV mice, whereas chemokine levels were the highest in this group at all experimental time points examined in comparison to RSV (p < 0.05). MMP-9 mRNA and protein were detected at high levels in ETOH-RSV mice compared to RSV. Using ex vivo transmigration to CCL2 and CXCL10, T cell migration was not impaired between any of the treatment groups, yet when CCL2 and CXCL10 were treated with activated MMP-9, significantly fewer T cells migrated across collagen-coated 5-µm membranes (p < 0.05). Immune cell recruitment is necessary for viral clearance. We show that immune cells are decreased in the lungs of ETOH-RSV mice. In contrast to decreased cell recruitment, key inflammatory chemokines were elevated in the lungs of ETOH-RSV mice. These proteins may be prematurely degraded by MMP-9 in the lung, leading to defective immunity and reduced viral clearance.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Etanol/efeitos adversos , Metaloproteinase 9 da Matriz/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios , Linfócitos T/efeitos dos fármacos , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar/citologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Depuração Mucociliar/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA