Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 134(4): 2172-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22074220

RESUMO

Despite a long history of success in formation of transition-metal-doped quantum dots (QDs), the origin of magnetism in diluted magnetic semiconductors (DMSs) is yet a controversial issue. Cr(II)-doped II-VI DMSs are half-metallic, resulting in high-temperature ferromagnetism. The magnetic properties reflect a strong p-d exchange interaction between the spin-up Cr(II) t(2g) level and the Se 4p. In this study, ultrasmall (~3.1 nm) Cr(II)-doped CdSe DMSQDs are shown to exhibit room-temperature ferromagnetism, as expected from theoretical arguments. Surprisingly, a low-temperature phase transition is observed at 20 K that is believed to reflect the onset of long-range ordering of the single-domain DMSQD.


Assuntos
Cádmio/química , Cromo/química , Magnetismo , Pontos Quânticos , Teoria Quântica , Selênio/química , Transição de Fase , Temperatura
2.
J Am Chem Soc ; 134(41): 17046-52, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22917192

RESUMO

A century ago Ostwald described the "Rule of Stages" after deducing that crystal formation must occur through a series of intermediate crystallographic phases prior to formation of the final thermodynamically stable structure. Direct evidence of the Rule of Stages is lacking, and the theory has not been implemented to allow isolation of a selected structural phase. Here we report the role of Ostwald's Rule of Stages in the growth of CdSe quantum dots (QDs) from molecular precursors in the presence of hexadecylamine. It is observed that, by controlling the rate of growth through the reaction stoichiometry and therefore the probability of ion-packing errors in the growing QD, the initially formed zinc blende (ZB) critical nuclei representing the kinetic phase can be maintained at sizes >14 nm in diameter without phase transformation to the thermodynamic wurtzite (WZ) structure. An intermediate pseudo-ZB structure is observed to appear at intermediate reaction conditions, as predicted by Ostwald. The ZB and pseudo-ZB structures convert to the WZ lattice above a critical melting temperature. This study validates Ostwald's Rule of Stages and provides a phase diagram for growth of CdSe QDs exhibiting a specific crystallographic motif.

3.
J Am Chem Soc ; 130(28): 8916-22, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18576624

RESUMO

Controlling nanomaterial growth via the "specific microwave effect" can be achieved by selective heating of the chalcogenide precursor. The high polarizability of the precursor allows instantaneous activation and subsequent nucleation leading to the synthesis of CdSe and CdTe in nonmicrowave absorbing alkane solvents. Regardless of the desired size, narrow dispersity nanocrystals can be isolated in less than 3 min with high quantum efficiencies and elliptical morphologies. The reaction does not require a high temperature injection step, and the alkane solvent can be easily removed. In addition, batch-to-batch variance in size is 4.2 +/- 0.14 nm for 10 repeat experimental runs. The use of a stopped-flow reactor allows near continuous automation of the process leading to potential industrial benefits.


Assuntos
Alcanos/química , Compostos de Cádmio/síntese química , Micro-Ondas , Nanoestruturas/química , Compostos de Selênio/síntese química , Absorção , Compostos de Cádmio/química , Medições Luminescentes , Compostos de Selênio/química , Telúrio/química
4.
Forensic Sci Int ; 284: 204-218, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29408730

RESUMO

An extensive literature review and new post-irradiation experimental results are presented of genotyping blood stains and hair, and physical examinations of latent fingerprints, hairs, and fibers. Results indicate that successful development of nuclear short tandem repeat (STR) and mitochondrial DNA sequence profiles from human blood and hair evidence is possible-up to a point-following exposure to gamma, neutron, beta, and alpha radiation at several levels that would most likely be present at this type of crime scene (i.e., a "dirty bomb," etc.). Commencing at gamma radiation levels between 90 and 900kGy, DNA analysis using conventional DNA techniques was unsuccessful. In general, irradiation negatively affected the quality of latent fingerprints. All four radiation types degraded most fingerprint samples at all doses; nevertheless, many fingerprints remained of value for potential use in comparison. Although variable from one hair to another, microscopic changes observed for all types and levels of irradiation could potentially result in false exclusions. Negligible microscopic changes were observed in papers and fibers (used as substrates for fingerprints and bloodstains) up to 90kGy gamma, but fluorescence of fibers began to change above that dose. Paper and fibers, as well as plastic evidence enclosures, became extremely brittle leading to breakage after a gamma dose of 900kGy.


Assuntos
DNA/efeitos da radiação , Dermatoglifia , Cabelo/efeitos da radiação , Radiação Ionizante , Fibra de Algodão , Impressões Digitais de DNA , DNA Mitocondrial/genética , Fluorescência , Genótipo , Humanos , Repetições de Microssatélites , Papel , Doses de Radiação , Análise de Sequência de DNA
6.
J Am Chem Soc ; 127(45): 15791-800, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16277522

RESUMO

Microwave reactor methodologies are unique in their ability to be scaled-up without suffering thermal gradient effects, providing a potentially industrially important improvement in nanocrystal synthetic methodology over convective methods. Synthesis of high-quality, near monodispersity nanoscale InGaP, InP, and CdSe have been prepared via direct microwave heating of the molecular precursors rather than convective heating of the solvent. Microwave dielectric heating not only enhances the rate of formation, it also enhances the material quality and size distributions. The reaction rates are influenced by the microwave field and by additives. The final quality of the microwave-generated materials depends on the reactant choice, the applied power, the reaction time, and temperature. CdSe nanocrystals prepared in the presence of a strong microwave absorber exhibit sharp excitonic features and a QY of 68% for microwave-grown materials. InGaP and InP are rapidly formed at 280 degrees C in minutes, yielding clean reactions and monodisperse size distributions that require no size-selective precipitation and result in the highest out of batch quantum efficiency reported to date of 15% prior to chemical etching. The use of microwave (MW) methodology is readily scalable to larger reaction volumes, allows faster reaction times, removes the need for high-temperature injection, and suggests a specific microwave effect may be present in these reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA