Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8019): 67-72, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839970

RESUMO

Since the demonstration of p-type gallium nitride (GaN) through doping with substitutional magnesium (Mg) atoms1,2, rapid and comprehensive developments, such as blue light-emitting diodes, have considerably shaped our modern lives and contributed to a more carbon-neutral society3-5. However, the details of the interplay between GaN and Mg have remained largely unknown6-11. Here we observe that Mg-intercalated GaN superlattices can form spontaneously by annealing a metallic Mg film on GaN at atmospheric pressure. To our knowledge, this marks the first instance of a two-dimensional metal intercalated into a bulk semiconductor, with each Mg monolayer being intricately inserted between several monolayers of hexagonal GaN. Characterized as an interstitial intercalation, this process induces substantial uniaxial compressive strain perpendicular to the interstitial layers. Consequently, the GaN layers in the Mg-intercalated GaN superlattices exhibit an exceptional elastic strain exceeding -10% (equivalent to a stress of more than 20 GPa), among the highest recorded for thin-film materials12. The strain alters the electronic band structure and greatly enhances hole transport along the compression direction. Furthermore, the Mg sheets induce a unique periodic transition in GaN polarity, generating polarization-field-induced net charges. These characteristics offer fresh insights into semiconductor doping and conductivity enhancement, as well as into elastic strain engineering of nanomaterials and metal-semiconductor superlattices13.

2.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38649269

RESUMO

Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Proteínas tau , Astrócitos/metabolismo , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Feminino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E3/genética , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Células Cultivadas , Técnicas de Cocultura
3.
Acta Neuropathol ; 147(1): 84, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750212

RESUMO

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Proteínas de Ligação a DNA , Proteínas Mitocondriais , Fatores de Transcrição , Astrócitos/patologia , Astrócitos/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
4.
J Neurosci ; 34(48): 15912-22, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25429133

RESUMO

Mutations in the presenilin (PSEN1 and PSEN2) genes are linked to familial Alzheimer's disease (AD) and cause loss of its essential function. Complete inactivation of presenilins in excitatory neurons of the adult mouse cerebral cortex results in progressive memory impairment and age-dependent neurodegeneration, recapitulating key features of AD. In this study, we examine the effects of varying presenilin dosage on cortical neuron survival by generating presenilin-1 conditional knock-out (PS1 cKO) mice carrying two, one, or zero copies of the PS2 gene. We found that PS1 cKO;PS2(+/-) mice at 16 months exhibit marked neurodegeneration in the cerebral cortex with ∼17% reduction of cortical volume and neuron number, as well as astrogliosis and microgliosis compared with ∼50% reduction of cortical volume and neuron number in PS1 cKO;PS2(-/-) mice. Moreover, there are more apoptotic neurons labeled by activated caspase-3 immunoreactivity and TUNEL assay in PS1 cKO;PS2(+/-) mice at 16 months, whereas apoptotic neurons are increased in the PS1 cKO;PS2(-/-) cerebral cortex at 4 months. The accumulation of the C-terminal fragments of the amyloid precursor protein is inversely correlated with PS dosage. Interestingly, levels of PS2 are higher in the cerebral cortex of PS1 cKO mice, suggesting a compensatory upregulation that may provide protection against neurodegeneration in these mice. Together, our findings show that partial to complete loss of presenilin activity causes progressively more severe neurodegeneration in the mouse cerebral cortex during aging, suggesting that impaired presenilin function by PSEN mutations may lead to neurodegeneration and dementia in AD.


Assuntos
Envelhecimento/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Presenilina-1/deficiência , Presenilina-2/deficiência , Envelhecimento/patologia , Animais , Sobrevivência Celular/fisiologia , Córtex Cerebral/patologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/patologia
6.
J Diabetes Investig ; 15(7): 843-850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459768

RESUMO

AIMS/INTRODUCTION: We aimed to evaluate factors that influence changes in blood low-density lipoprotein cholesterol (LDL-C) levels after treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors in Japanese patients with type 2 diabetes. MATERIALS AND METHODS: We retrospectively analyzed clinical data of outpatients newly initiated on SGLT2 inhibitors (n = 176) and other oral antidiabetic drugs (n = 227). The patients were classified into four subgroups according to statin administration and baseline LDL-C levels (<120 or ≥120 mg/dL). Clinical characteristics were compared among the subgroups. Multivariate analysis was carried out to identify factors contributing to changes in LDL-C. RESULTS: The median follow-up period was 13.0 weeks (range 11.9-14.1 weeks, min 8 weeks, maximum 16 weeks) in the SGLT2i group, and 12.0 weeks (range 10.0-14.0 weeks, min 8 weeks, maximum 16 weeks) in the control group. Both groups showed a significant decrease in LDL-C (SGLT2i group -3.8 ± 24.7 mg/dL, control group -3.4 ± 15.0 mg/dL). Multivariate regression analyses showed that in both groups, the change in LDL-C depended on statin use and baseline LDL-C levels. Stratified analyses showed that LDL-C level was significantly decreased in statin users with baseline LDL-C ≥120 mg/dL (from 148.9 ± 33.5 to 109.3 ± 17.9 mg/dL, P = 0.002), and significantly increased in statin non-users with baseline LDL-C <120 mg/dL (from 96.3 ± 27.3 to 104.7 ± 24.8 mg/dL, P = 0.002). These changes were more characteristic for SGLT2 inhibitors than for other oral antidiabetic drugs (P for interaction = 0.010 and <0.001, respectively). CONCLUSIONS: LDL-C levels and statin medication at baseline influence changes in LDL-C after SGLT2 inhibitors treatment in Japanese patients with type 2 diabetes.


Assuntos
LDL-Colesterol , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Masculino , LDL-Colesterol/sangue , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Japão/epidemiologia , Hipoglicemiantes/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Seguimentos , Biomarcadores/sangue , Glicemia/análise , População do Leste Asiático
7.
J Diabetes ; 16(2): e13486, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853936

RESUMO

BACKGROUND: This study aimed to evaluate the changes in glycemic control and diabetic complications over time in Japanese patients with juvenile-onset type 1 diabetes mellitus and to clarify the factors associated with the progression of diabetic complications. METHODS: We tracked 129 patients with type 1 diabetes mellitus (21.8 ± 4.1 years old [mean ± SD] with a diabetes duration of 12.6 ± 5.7 years) for up to 19 years and analyzed data on glycated hemoglobin (HbA1c) and indicators related to the severity of diabetic complications (estimated glomerular filtration rate [eGFR], urinary albumin excretion rate [UAE], carotid intima-media thickness [CIMT], and brachial-ankle pulse wave velocity [baPWV]) using linear mixed model and decision tree analysis. RESULTS: Although the HbA1c and UAE levels improved over time, the eGFR, CIMT, and baPWV worsened. Decision tree analysis showed that HbA1c and the glycoalbumin/HbA1c ratio for eGFR; HbA1c and systolic blood pressure for UAE; low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio, glycoalbumin/HbA1c ratio, and body mass index (BMI) for CIMT; and HbA1c for baPWV were associated factors. CONCLUSIONS: In this retrospective observational study, glycemic control and albuminuria improved; however, renal function and arteriosclerosis worsened over time. HbA1c levels, glycemic excursion, and blood pressure are associated with nephropathy progression. HbA1c levels, glycemic excursion, lipid levels, and BMI are associated with the progression of atherosclerosis.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Adolescente , Adulto Jovem , Adulto , Diabetes Mellitus Tipo 1/complicações , Hemoglobinas Glicadas , Espessura Intima-Media Carotídea , Índice Tornozelo-Braço/efeitos adversos , Controle Glicêmico/efeitos adversos , Albumina Sérica Glicada , Japão , Análise de Onda de Pulso/efeitos adversos , Complicações do Diabetes/complicações , Colesterol , Nefropatias Diabéticas/complicações , Fatores de Risco
8.
J Biomed Mater Res A ; 112(7): 963-972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38235956

RESUMO

Bone fractures represent a common health problem, particularly in an increasingly aging population. Bioresorbable magnesium (Mg) alloy-based implants offer promising alternatives to traditional metallic implants for the treatment of bone fractures because they eliminate the need for implant removal after healing. The Mg-Y-rare-earth (RE)-Zr alloy WE43, designed for orthopedic implants, has received European Conformity mark approval. However, currently, WE43 is not clinically used in certain countries possibly because of concerns related to RE metals. In this study, we investigated the use of a RE-free alloy, namely, Mg-Zn-Zr alloy (ZK30), as an implant for bone fractures. Hydrofluoric acid (HF) treatment was performed to improve the corrosion resistance of ZK30. HF-treated ZK30 (HF-ZK30) exhibited lower corrosion rate and higher biocompatibility than those of WE43 in in vitro experiments. After implanting a rod of HF-ZK30 into the fractured femoral bones of mice, HF-ZK30 held the bones and healed the fracture without deformation. Treatment results of HF-ZK30 were comparable to those of WE43, indicating the potential of HF-ZK30 as a bioresorbable and safe implant for bone repair.


Assuntos
Implantes Absorvíveis , Ligas , Magnésio , Animais , Magnésio/química , Magnésio/farmacologia , Ligas/química , Camundongos , Fluoretos/química , Corrosão , Teste de Materiais , Fraturas Ósseas/terapia , Masculino , Materiais Biocompatíveis/química
9.
J Neurosci ; 32(15): 5085-96, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496554

RESUMO

Mutations in the presenilin-1 (PSEN1) gene are associated with familial Alzheimer's disease and frontotemporal dementia (FTD). Interestingly, neuropathological analysis of a Belgian FTD family carrying a PSEN1 c.548G>T mutation confirmed neurodegeneration in the absence of amyloid plaques. To investigate the impact of the c.548G>T mutation on presenilin-1 (PS1) function in vivo, we introduced this mutation into the genomic Psen1 locus. The resulting c.548G>T knock-in (KI) mice are viable but express markedly lower levels of Psen1 mRNA and protein in the brain. This reduction is due to production of aberrantly spliced transcripts lacking either exon 6 or exons 6 and 7 and their subsequent degradation via non-sense-mediated decay (NMD); inhibition of NMD by cycloheximide treatment stabilized these transcripts and restored the level of Psen1 mRNA in KI/KI brains. Interestingly, the reduction of Psen1 mRNA expression and the degradation of aberrant Psen1 splice products occur exclusively in the brain but not in other tissues. Consistent with decreased Psen1 expression, γ-secretase activity was strongly reduced in the cerebral cortex of KI mice, as measured by de novo γ-secretase-mediated cleavage of APP and Notch. Moreover, PS1 expressed from Psen1 cDNA carrying the c.548G>T mutation displayed normal γ-secretase activity in cultured cells, indicating that the corresponding p.183G>V amino acid substitution does not affect γ-secretase activity. Finally, Psen1 c.548G>T(KI/KI);Psen2(-/-) mice exhibited mild spatial memory deficits in the Morris water maze task. Together, our findings demonstrate that the c.548G>T mutation results in a brain-specific loss of presenilin function due to decreased Psen1 mRNA expression.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Mutação/fisiologia , Presenilina-1/genética , RNA Mensageiro/genética , Alelos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Northern Blotting , Western Blotting , Encéfalo/patologia , Cicloeximida/farmacologia , Ensaio de Imunoadsorção Enzimática , Demência Frontotemporal/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Camundongos , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Proteínas tau/genética , Proteínas tau/metabolismo
10.
J Biol Chem ; 287(24): 20356-68, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22505716

RESUMO

Activation of Notch signaling requires intramembranous cleavage by γ-secretase to release the intracellular domain. We previously demonstrated that presenilin and nicastrin, components of the γ-secretase complex, are required for neuronal survival in the adult cerebral cortex. Here we investigate whether Notch1 and/or Notch2 are functional targets of presenilin/γ-secretase in promoting survival of excitatory neurons in the adult cerebral cortex by generating Notch1, Notch2, and Notch1/Notch2 conditional knock-out (cKO) mice. Unexpectedly, we did not detect any neuronal degeneration in the adult cerebral cortex of these Notch cKO mice up to ∼2 years of age, whereas conditional inactivation of presenilin or nicastrin using the same αCaMKII-Cre transgenic mouse caused progressive, striking neuronal loss beginning at 4 months of age. More surprisingly, we failed to detect any reduction of Notch1 and Notch2 mRNAs and proteins in the cerebral cortex of Notch1 and Notch2 cKO mice, respectively, even though Cre-mediated genomic deletion of the floxed Notch1 and Notch2 exons clearly took place in the cerebral cortex of these cKO mice. Furthermore, introduction of Cre recombinase into primary cortical cultures prepared from postnatal floxed Notch1/Notch2 pups, where Notch1 and Notch2 are highly expressed, completely eliminated their expression, indicating that the floxed Notch1 and Notch2 alleles can be efficiently inactivated in the presence of Cre. Together, these results demonstrate that Notch1 and Notch2 are not involved in the age-related neurodegeneration caused by loss of presenilin or γ-secretase and suggest that there is no detectable expression of Notch1 and Notch2 in pyramidal neurons of the adult cerebral cortex.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , RNA Mensageiro/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , RNA Mensageiro/genética , Receptor Notch1/genética , Receptor Notch2/genética
11.
J Diabetes Investig ; 14(2): 259-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36345602

RESUMO

This study investigated whether longer-acting basal analogs (insulin degludec and insulin glargine U300) could reduce visit-to-visit hemoglobin A1c (HbA1c) variability in patients with type 1 diabetes. Ninety adults with type 1 diabetes for whom the basal insulin was switched to a longer-acting insulin analog were analyzed retrospectively. The coefficient of variation of HbA1c levels (CV-HbA1c) during the year before and after the switch was compared. The CV-HbA1c after the switch was not significantly different from that before the switch (4.39 ± 2.24% vs 4.25 ± 2.07%; P = 0.506). The linear regression model revealed that CV-HbA1c before the switch was independently associated with the change of CV-HbA1c (regression coefficient per standard deviation = -0.568, P < 0.001), whereas the other variables were not (all P > 0.05). In conclusion, CV-HbA1c remained unchanged after the switch on average, but CV-HbA1c before the switch was associated with the decrease of CV-HbA1c in individuals with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hipoglicemia , Adulto , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Hemoglobinas Glicadas , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Estudos Retrospectivos , Hipoglicemia/complicações
12.
Stem Cell Reports ; 18(9): 1854-1869, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37657448

RESUMO

The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrócitos , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Genótipo
13.
J Diabetes Investig ; 14(1): 102-110, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208067

RESUMO

AIMS/INTRODUCTION: Hypertriglyceridemia is common in patients with diabetes. Although the fatty acid (FA) composition of triglycerides (TGs) is suggested to be related to the pathology of diabetes and its complications, changes in the fatty acid composition caused by diabetes treatment remain unclear. This study aimed to identify short-term changes in the fatty acid composition of plasma triglycerides after diabetes treatment. MATERIALS AND METHODS: This study was a sub-analysis of a prospective observational study of patients with type 2 diabetes aged between 20 and 75 years who were hospitalized to improve glycemic control (n = 31). A lipidomic analysis of plasma samples on the 2nd and 16th hospital days was conducted by supercritical fluid chromatography coupled with mass spectrometry. RESULTS: In total, 104 types of triglycerides with different compositions were identified. Most of them tended to decrease after treatment. In particular, triglycerides with a lower carbon number and fewer double bonds showed a relatively larger reduction. The inclusion of FA 14:0 (myristic acid), as a constituent of triglyceride, was significantly associated with a more than 50%, and statistically significant, reduction (odds ratio 39.0; P < 0.001). The total amount of FA 14:0 as a constituent of triglycerides also decreased significantly, and its rate of decrease was the greatest of all the fatty acid constituents. CONCLUSIONS: A 2 week comprehensive risk management for diabetes resulted in decreased levels of plasma triglycerides and a change in the fatty acid composition of triglycerides, characterized by a relatively large reduction in FA 14:0 as a constituent of triglycerides.


Assuntos
Cromatografia com Fluido Supercrítico , Diabetes Mellitus Tipo 2 , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Ácidos Graxos , Triglicerídeos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lipidômica , Espectrometria de Massas , Gestão de Riscos
14.
Methods Mol Biol ; 2549: 209-217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33959916

RESUMO

Amyloid ß (Aß) peptides are the main component of the characteristic insoluble deposits in brain parenchyma and small blood vessels in the patients afflicted with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). These small peptides are attributed to the pathogenesis of both AD and CAA, suggesting an important index for disease stage and progression. In the brain tissue, Aßs are released mainly from neuronal cells into extracellular space. Here, we describe a step-by-step protocol to measure Aßs secreted from human pluripotent stem cell-derived neuronal cells.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Ensaio de Imunoadsorção Enzimática , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia
15.
Diabetol Int ; 13(1): 336, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35059273

RESUMO

[This corrects the article DOI: 10.1007/s13340-020-00438-6.].

16.
Inflamm Regen ; 42(1): 20, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773727

RESUMO

BACKGROUND: Microglia are innate immune cells that are the only residential macrophages in the central nervous system. They play vital physiological roles in the adult brain and during development. Microglia are particularly in the spotlight because many genetic risk factors recently identified for neurodegenerative diseases are largely expressed in microglia. Rare polymorphisms in these risk alleles lead to abnormal activity of microglia under traumatic or disease conditions. METHODS: In the present study, to investigate the multifaceted functions of human microglia, we established a novel robust protocol to generate microglia from human induced pluripotent stem cells (hiPSCs) using a combination of cytokines and small chemicals essential for microglia ontogeny. Moreover, we highly enhanced the microglial differentiation efficiency by forcing the expression of PU.1, a crucial transcription factor for microglial development, during posterior mesoderm differentiation. RESULTS: By our novel method, we demonstrated the generation of a greater number of hiPSC-derived microglia (hiMGLs, approximately 120-folds) than the prior methods (at most 40-folds). Over 90% of the hiMGLs expressed microglia-specific markers, such as CX3CR1 and IBA-1. Whole-transcriptome analysis revealed that these hiMGLs are similar to human primary microglia but differ from monocytes/macrophages. Furthermore, the specific physiological functions of microglia were confirmed through indices of lipopolysaccharide responsiveness, phagocytotic ability, and inflammasome formation. By co-culturing these hiMGLs with mouse primary neurons, we demonstrated that hiMGLs can regulate the activity and maturation of neurons. CONCLUSIONS: In this study, our new simple, rapid, and highly efficient method for generating microglia from hiPSCs will prove useful for future investigations on microglia in both physiological and disease conditions, as well as for drug discovery.

17.
Endocrine ; 75(3): 752-759, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34599693

RESUMO

PURPOSE: Exercise on a whole body vibration (WBV) platform, namely WBV exercise (WBVE), has long-term beneficial effects on glucose metabolism, similarly to conventional moderate-intensity exercise. Conventional moderate-intensity exercise reduces post-load plasma glucose levels at the acute phase. This study aimed to reveal acute effects of WBVE on post-load glucose metabolism. METHODS: This randomized crossover trial enrolled 18 healthy men. They completed the following three interventions in a random order: (1) a 2-hour 75-g oral glucose tolerance test (OGTT) without WBVE (OGTT-alone), (2) 20-minute WBVE before an OGTT (WBVE → OGTT), and (3) 20-minute WBVE during an OGTT (OGTT → WBVE). Post-load glucose metabolism in the WBVE → OGTT and OGTT → WBVE interventions were compared with that in the OGTT-alone intervention. RESULTS: Plasma glucose levels in the WBVE → OGTT and OGTT → WBVE interventions were not significantly different from those in the OGTT-alone intervention at any time point except 15 min, wherein the WBVE → OGTT intervention had higher glucose levels (111 [interquartile range, 102-122] mg/dL vs 122 [111-134] mg/dL, P = 0.026). Higher plasma glucagon levels were observed at 0 min in the WBVE → OGTT intervention and at 60 min in the OGTT → WBVE intervention (P = 0.010 and 0.015). Cortisol, Growth hormone, and adrenaline levels were significantly increased after WBVE, whereas noradrenaline levels were not. Serum insulin levels in the WBVE → OGTT intervention were significantly higher than those in the OGTT-alone intervention at 0 min (P = 0.008). CONCLUSIONS: WBVE did not decrease post-load plasma glucose levels at the acute phase. Acute effects of WBVE on post-load glucose metabolism would not be identical to those of conventional exercise. The unique trial number and the name of the registry: UMIN000036520, www.umin.ac.jp , date of registration, June 12, 2019.


Assuntos
Glucose , Vibração , Glicemia/metabolismo , Estudos Cross-Over , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Masculino , Projetos Piloto , Vibração/uso terapêutico
18.
J Diabetes Investig ; 13(2): 375-385, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33768726

RESUMO

AIMS/INTRODUCTION: This study aimed to reveal lifestyle changes and their impact on glycemic control and weight control in patients with diabetes during the coronavirus disease 2019 (COVID-19) pandemic in Japan. MATERIALS AND METHODS: We retrospectively analyzed 1,402 outpatients with diabetes at a clinic in Osaka, Japan, who responded to an interview sheet regarding lifestyle changes during the COVID-19 pandemic between 28 March and 30 May 2020. The association of lifestyle changes with hemoglobin A1c (HbA1c) and weight changes from February to May 2020 was investigated using the linear regression model. We also investigated the association with clinically important change of HbA1c (by ≥0.3%) and bodyweight (by ≥3%), using the cumulative link model. RESULTS: Leisure time and other outside physical activities were decreased in one-quarter of patients during the COVID-19 pandemic, whereas the amount of meals and snacks was decreased and increased in approximately 10%, respectively. The change in leisure time physical activities was inversely associated with HbA1c and weight changes, whereas the quantitative change of meals with the decline in eating out and that of snacks were positively associated with HbA1c and weight changes (all P < 0.05). The quantitative change of meals without the decline in eating out was also positively associated with weight change (P = 0.012). The cumulative link model for clinically important HbA1c and weight change showed broadly similar associations, except for that between snacks and bodyweight (P = 0.15). CONCLUSIONS: A considerable number of outpatients with diabetes experienced lifestyle changes during the COVID-19 pandemic. The lifestyle changes were associated with HbA1c and weight changes.


Assuntos
COVID-19 , Diabetes Mellitus , Diabetes Mellitus/epidemiologia , Hemoglobinas Glicadas/análise , Controle Glicêmico , Humanos , Japão/epidemiologia , Estilo de Vida , Pandemias/prevenção & controle , Estudos Retrospectivos , SARS-CoV-2
19.
Sci Rep ; 12(1): 7363, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513412

RESUMO

As a newly developed technique to slice GaN substrates, which are currently very expensive, with less loss, we previously reported a laser slicing technique in this journal. In the previous report, from the perspective of GaN substrate processing, we could only show that the GaN substrate could be sliced by a laser and that the sliced GaN substrate could be reused. In this study, we newly investigated the applicability of this method as a device fabrication process. We demonstrated the thinning of GaN-on-GaN high-electron-mobility transistors (HEMTs) using a laser slicing technique. Even when the HEMTs were thinned by laser slicing to a thickness of 50 mm after completing the fabrication process, no significant fracture was observed in these devices, and no adverse effects of laser-induced damage were observed on electrical characteristics. This means that the laser slicing process can be applied even after device fabrication. It can also be used as a completely new semiconductor process for fabricating thin devices with thicknesses on the order of 10 mm, while significantly reducing the consumption of GaN substrates.

20.
Sci Rep ; 12(1): 21208, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481806

RESUMO

Lanthanoid-doped Gallium Nitride (GaN) integrated into nanophotonic technologies is a promising candidate for room-temperature quantum photon sources for quantum technology applications. We manufactured praseodymium (Pr)-doped GaN nanopillars of varying size, and showed significantly enhanced room-temperature photon extraction efficiency compared to unstructured Pr-doped GaN. Implanted Pr ions in GaN show two main emission peaks at 650.3 nm and 651.8 nm which are attributed to 3P0-3F2 transition in the 4f-shell. The maximum observed enhancement ratio was 23.5 for 200 nm diameter circular pillars, which can be divided into the emitted photon extraction enhancement by a factor of 4.5 and the photon collection enhancement by a factor of 5.2. The enhancement mechanism is explained by the eigenmode resonance inside the nanopillar. Our study provides a pathway for Lanthanoid-doped GaN nano/micro-scale photon emitters and quantum technology applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA