Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fish Dis ; 46(11): 1311-1319, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37579018

RESUMO

Cryptocaryoniasis (marine white spot disease), caused by Cryptocaryon irritans, is a major threat to marine fish cultures in tropical and subtropical waters, and a serious nuisance to hobbyists with saltwater fish tanks. With only classical treatment schedules such as copper salts or hyposaline baths being available, control of the disease remains a challenge. In this study, we investigated the effect of Biokos, a viscosin-like lipopeptide surfactant extracted from a bacterium of the Pseudomonas genus, on the external life stages of C. irritans, including theronts, protomonts and tomonts. The present study demonstrated that the compound has an antiparasitic effect on all tested external stages of the parasite. In particular, when Biokos was used at 48 mg/L, it was able to kill almost all theronts and protomonts within 1 h in in vitro experiments, and using the same concentration in an in vivo challenge experiment, the parasitic load was reduced by more than 95% compared to the control group with no Biokos. Additionally, cultured fish cells were able to proliferate, and fish showed no adverse signs at Biokos concentrations that were effective in killing the parasite. Thus, Biokos may be a promising way for preventing or reducing the burden of this parasitic disease in the future.

2.
Parasitol Int ; 98: 102812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777053

RESUMO

We examined the effects of light exposure on the theront excystment circadian rhythm in Cryptocaryon irritans using a newly invented apparatus, which enabled us to examine the excystment rhythms of theronts from tomonts with low labor. Using the apparatus, we examined the timings of theront excystment from tomonts exposed directly to light and from tomonts exposed to light-exposed seawater by counting the number of excysted theronts. We found that the theront excystment time changed only when tomonts were directly exposed to light, indicating that light reception is essential for circadian rhythm entrainment. When tomonts were exposed to light only once for 12 h, either on Day 1, Day 2, or Day 3 after leaving host and being encysted, the circadian rhythm was entrained according to the photoperiod given on tomonts. Tomonts exposed to a low light (1 lx) with 12L:12D photoperiod daily showed a circadian rhythm similar to that in tomonts exposed to an intense light (500 lx) under the same photoperiod. When tomonts were incubated at 22 °C, 25 °C, or 28 °C under the same photoperiod, almost the same circadian rhythm was developed, suggesting temperature has little effect on the circadian rhythm entrainment between the range, even though the date of excystment was delayed in lower temperatures. These results suggest the circadian rhythm of theront excystment can be entrained in tomonts on the seabed of inner bays where net-cage aquaculture is conducted, and be involved in the outbreaks of cryptocaryoniasis there.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Animais , Ritmo Circadiano , Temperatura
3.
Mol Biotechnol ; 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480447

RESUMO

Cryptocaryoniasis, caused by Cryptocaryon irritans, is a significant threat to marine fish cultures in tropical and subtropical waters. However, controlling this disease remains a challenge. Fish infected with C. irritans acquires immunity; however, C. irritans is difficult to culture in large quantities, obstructing vaccine development using parasite cells. In this study, we established a method for expressing an arbitrary protein on the surface of Tetrahymena thermophila, a culturable ciliate, to develop a mimetic C. irritans. Fusing the signal peptide (SP) and glycosylphosphatidylinositol (GPI) anchor sequences of the immobilization antigen, a surface protein of C. irritans, to the fluorescent protein, monomeric Azami-green 1 (mAG1) of the stony coral Galaxea fascicularis, allowed protein expression on the surface and cilia of transgenic Tetrahymena cells. This technique may help develop transgenic Tetrahymena displaying parasite antigens on their cell surface, potentially contributing to the development of vaccines using "mimetic parasites".

4.
MethodsX ; 7: 101000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793427

RESUMO

We established a laboratory propagation method of Cryptocaryon irritans, a parasitic ciliate of marine fishes, with black molly Poecilia sp. as host fish, using small plastic aquaria. One cycle of the propagation usually takes one week. With this method, 1500-3000 protomonts are obtained from five challenged mollies every week, from which more than 100,000-200,000 theronts are obtained. Using this method, an isolate of C. irritans has been successfully maintained more than three years. This propagation method reduces labor for maintaining and propagating the parasite and will much contribute to researches on cryptocaryoniasis.•The method is a laboratory propagation technique of Cryptocaryon irritans.•Using small plastic aquaria and black molly as a host, the parasites can be stably propagated and maintained.•An isolate of C. irritans has been successfully maintained more than three years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA