Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 39(7): 545-559, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36801111

RESUMO

The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Genômica , Genoma
2.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377349

RESUMO

Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.


Assuntos
Drosophila , Imunidade Inata , Animais , Nucleotídeos Cíclicos , Antivirais/farmacologia
3.
PLoS Pathog ; 19(3): e1011257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972320

RESUMO

Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host's innate responses to colonize and multiply within the host.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Infecções por Mycobacterium , Mycobacterium abscessus , Mycobacterium , Animais , Humanos , Camundongos , Drosophila melanogaster , Fagócitos/patologia , Infecções por Mycobacterium/microbiologia , Drosophila , Infecções por Mycobacterium não Tuberculosas/microbiologia
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983844

RESUMO

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a mixture of potent bioactive molecules to subdue prey or predators-venom. This makes it one of the most widespread, convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed a comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland-specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turn, activates regulatory networks for epithelial development, cell turnover, and maintenance, which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents a first step toward an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


Assuntos
Evolução Molecular , Filogenia , Transcriptoma , Peçonhas , Estruturas Animais/metabolismo , Animais , Peçonhas/biossíntese , Peçonhas/genética
5.
Proc Natl Acad Sci U S A ; 119(24): e2114309119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675424

RESUMO

Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes, which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes-mosquito-borne viruses.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Saliva , Taquicininas , Viroses , Aedes/genética , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus/genética , Arbovírus/metabolismo , Saliva/virologia , Taquicininas/genética , Taquicininas/metabolismo , Viroses/transmissão
7.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893861

RESUMO

Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.


Assuntos
Evolução Molecular , Insetos , Animais , Genoma , Genômica , Sistema Imunitário , Insetos/genética
8.
PLoS Pathog ; 17(5): e1009486, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015060

RESUMO

Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases.


Assuntos
Ração Animal/análise , Anopheles/crescimento & desenvolvimento , Comportamento Alimentar , Mosquitos Vetores/fisiologia , Reprodução , Estearoil-CoA Dessaturase/metabolismo , Animais , Anopheles/enzimologia , Anopheles/imunologia , Feminino , Perfilação da Expressão Gênica , Mosquitos Vetores/parasitologia , Estearoil-CoA Dessaturase/genética
9.
PLoS Comput Biol ; 18(5): e1010075, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35560159

RESUMO

Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community's best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations.


Assuntos
Biologia Computacional , Semântica , Biologia Computacional/métodos , Consenso , Ontologia Genética , Aprendizado de Máquina , Anotação de Sequência Molecular
10.
Proc Natl Acad Sci U S A ; 117(24): 13615-13625, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471944

RESUMO

Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Animais , Abelhas/genética , Comportamento Animal , Evolução Biológica , Evolução Molecular , Feminino , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Metamorfose Biológica , Comportamento Social
11.
Mol Biol Evol ; 38(2): 486-501, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32946576

RESUMO

Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.


Assuntos
Adaptação Biológica/genética , Abelhas/genética , Evolução Biológica , Genoma de Inseto , Animais , Uso do Códon , Elementos de DNA Transponíveis , Dieta , Comportamento Alimentar , Componentes do Gene , Tamanho do Genoma , Seleção Genética
12.
Genome Res ; 29(12): 2073-2087, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537640

RESUMO

The most widely appreciated role of DNA is to encode protein, yet the exact portion of the human genome that is translated remains to be ascertained. We previously developed PhyloCSF, a widely used tool to identify evolutionary signatures of protein-coding regions using multispecies genome alignments. Here, we present the first whole-genome PhyloCSF prediction tracks for human, mouse, chicken, fly, worm, and mosquito. We develop a workflow that uses machine learning to predict novel conserved protein-coding regions and efficiently guide their manual curation. We analyze more than 1000 high-scoring human PhyloCSF regions and confidently add 144 conserved protein-coding genes to the GENCODE gene set, as well as additional coding regions within 236 previously annotated protein-coding genes, and 169 pseudogenes, most of them disabled after primates diverged. The majority of these represent new discoveries, including 70 previously undetected protein-coding genes. The novel coding genes are additionally supported by single-nucleotide variant evidence indicative of continued purifying selection in the human lineage, coding-exon splicing evidence from new GENCODE transcripts using next-generation transcriptomic data sets, and mass spectrometry evidence of translation for several new genes. Our discoveries required simultaneous comparative annotation of other vertebrate genomes, which we show is essential to remove spurious ORFs and to distinguish coding from pseudogene regions. Our new coding regions help elucidate disease-associated regions by revealing that 118 GWAS variants previously thought to be noncoding are in fact protein altering. Altogether, our PhyloCSF data sets and algorithms will help researchers seeking to interpret these genomes, while our new annotations present exciting loci for further experimental characterization.


Assuntos
Éxons , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Análise de Sequência de DNA , Animais , Humanos , Pseudogenes
13.
Proc Biol Sci ; 289(1970): 20220042, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259992

RESUMO

Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites.


Assuntos
Parasitos , Ftirápteros , Animais , Columbidae , Interações Hospedeiro-Parasita , Filogenia
14.
BMC Biol ; 19(1): 7, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446206

RESUMO

BACKGROUND: Horizontal gene transfer (HGT) has been documented in many herbivorous insects, conferring the ability to digest plant material and promoting their remarkable ecological diversification. Previous reports suggest HGT of antibacterial enzymes may have contributed to the insect immune response and limit bacterial growth. Carnivorous insects also display many evolutionary successful lineages, but in contrast to the plant feeders, the potential role of HGTs has been less well-studied. RESULTS: Using genomic and transcriptomic data from 38 species of ladybird beetles, we identified a set of bacterial cell wall hydrolase (cwh) genes acquired by this group of beetles. Infection with Bacillus subtilis led to upregulated expression of these ladybird cwh genes, and their recombinantly produced proteins limited bacterial proliferation. Moreover, RNAi-mediated cwh knockdown led to downregulation of other antibacterial genes, indicating a role in antibacterial immune defense. cwh genes are rare in eukaryotes, but have been maintained in all tested Coccinellinae species, suggesting that this putative immune-related HGT event played a role in the evolution of this speciose subfamily of predominant predatory ladybirds. CONCLUSION: Our work demonstrates that, in a manner analogous to HGT-facilitated plant feeding, enhanced immunity through HGT might have played a key role in the prey adaptation and niche expansion that promoted the diversification of carnivorous beetle lineages. We believe that this represents the first example of immune-related HGT in carnivorous insects with an association with a subsequent successful species radiation.


Assuntos
Antibiose/genética , Evolução Biológica , Besouros/genética , Transferência Genética Horizontal , Genes Bacterianos , Genes de Insetos , Adaptação Biológica , Animais , Parede Celular/química , Parede Celular/enzimologia , Besouros/enzimologia , Interações Hospedeiro-Patógeno , Hidrolases/genética
15.
BMC Biol ; 19(1): 41, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750380

RESUMO

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Assuntos
Genoma de Inseto , Interações Hospedeiro-Parasita/genética , Controle de Insetos , Muscidae/genética , Animais , Reprodução/genética
16.
Proc Natl Acad Sci U S A ; 115(50): 12775-12780, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478043

RESUMO

Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.


Assuntos
Insetos/genética , Animais , Calibragem , Ecossistema , Fósseis , Genoma Mitocondrial/genética , Filogenia
17.
BMC Biol ; 18(1): 1, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898513

RESUMO

BACKGROUND: New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from 'finished'. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. RESULTS: We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. CONCLUSIONS: Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.


Assuntos
Anopheles/genética , Evolução Biológica , Cromossomos , Técnicas Genéticas/instrumentação , Genômica/métodos , Sintenia , Animais , Mapeamento Cromossômico
18.
BMC Evol Biol ; 20(1): 144, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148176

RESUMO

BACKGROUND: Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data. RESULTS: We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda. CONCLUSIONS: Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.


Assuntos
Artrópodes , Filogenia , Animais , Artrópodes/classificação , Artrópodes/genética , Transcriptoma
19.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937263

RESUMO

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Assuntos
Genes de Insetos , Genoma de Inseto , Genômica , Tribolium/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Genômica/métodos , MicroRNAs/genética , Anotação de Sequência Molecular , Filogenia , Interferência de RNA , Reprodutibilidade dos Testes
20.
Genome Res ; 27(9): 1536-1548, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28747381

RESUMO

Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues.


Assuntos
Anopheles/genética , Evolução Molecular , Genes Ligados ao Cromossomo X/genética , Proteínas de Insetos/genética , Malária/genética , Animais , Anopheles/patogenicidade , Feminino , Regulação da Expressão Gênica/genética , Especiação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Malária/parasitologia , Malária/transmissão , Masculino , Especificidade de Órgãos/genética , Filogenia , Caracteres Sexuais , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA