Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Postepy Biochem ; 63(3): 185-189, 2017.
Artigo em Polonês | MEDLINE | ID: mdl-29294262

RESUMO

The proper gene expression required precise and strictly controlled mechanisms, which allows to remove damaged and unnecessary transcripts. One of the most important quality control mechanism is Nonsense-Mediated mRNA Decay (NMD). The evolutionary conserved process prevents the production of potentially harmful proteins by eliminating aberrant mRNAs carrying premature translation termination codons (PTC). Extensive studies in yeast, C. elegans, flies and mammals established a whole set of additional NMD substrates, not only aberrant transcripts, but physiological mRNAs, noncoding RNAs, genes coding miRNA and snoRNA. It seems that the NMD process is related to development and response to different stresses. Moreover, recent studies regarding the identification of new protein factors involved in NMD mechanism show the wide complexity of this process.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Caenorhabditis elegans , RNA Mensageiro
2.
Plant J ; 76(5): 836-48, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118551

RESUMO

Nonsense-mediated mRNA decay (NMD) is an essential quality control system that degrades aberrant transcripts containing premature termination codons and regulates the expression of several normal transcripts. Targets for NMD are selected during translational termination. If termination is slow, the UPF1 NMD factor binds the eRF3 protein of the termination complex and then recruits UPF2 and UPF3. Consequently, the UPF1-2-3 NMD complex induces SMG7-mediated degradation of the target mRNA. It is unknown how formation of the NMD complex and transcript degradation are linked in plants. Previously we have shown that the N- and C-terminal domains of UPF1 act redundantly and that the N-terminal domain is phosphorylated. To clarify the role of UPF1 phosphorylation in plant NMD, we generated UPF1 mutants and analyzed their phosphorylation status and the NMD competency of the mutants. We show that although several residues in the N-terminal domain of UPF1 are phosphorylated, only three phosphorylated amino acids, S3, S13 and T29, play a role in NMD. Moreover, we found that the C-terminal domain consists of redundant S/TQ-rich segments and that S1076 is involved in NMD. All NMD-relevant phosphorylation sites were in the S/TQ context. Co-localization and fluorescence resonance energy transfer-fluorescence lifetime imaging assays suggest that N-terminal and probably also C-terminal phosphorylated S/TQ residues are the binding platform for SMG7. Our data support the hypothesis that phosphorylation of UPF1 connects NMD complex formation and the SMG7-mediated target transcript degradation steps of NMD. SMG7 binds the phosphorylated S/TQ sites of the UPF1 component of the NMD complex, and then it induces the degradation of the NMD target.


Assuntos
Proteínas de Arabidopsis/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , RNA de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Inativação Gênica , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Nicotiana/genética
3.
Plant Physiol ; 160(2): 868-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885934

RESUMO

Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd(2+) showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd(2+) treatment. Our data show significantly lower Cd(2+)-induced ROS accumulation in the mutants' roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloreto de Cádmio/farmacologia , Cádmio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Citoplasma/genética , Citoplasma/metabolismo , Ativação Enzimática , Técnicas de Inativação de Genes , Ferro/metabolismo , Microscopia Confocal , Mutação , Óxido Nítrico/metabolismo , Fitoquelatinas/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Nicotiana/efeitos dos fármacos , Nicotiana/enzimologia , Nicotiana/genética
4.
Biochem J ; 429(1): 73-83, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20397974

RESUMO

Several studies focusing on elucidating the mechanism of NO (nitric oxide) signalling in plant cells have highlighted that its biological effects are partly mediated by protein kinases. The identity of these kinases and details of how NO modulates their activities, however, remain poorly investigated. In the present study, we have attempted to clarify the mechanisms underlying NO action in the regulation of NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SNF1 (sucrose non-fermenting 1)-related protein kinase 2 family. We found that in tobacco BY-2 (bright-yellow 2) cells exposed to salt stress, NtOSAK is rapidly activated, partly through a NO-dependent process. This activation, as well as the one observed following treatment of BY-2 cells with the NO donor DEA/NO (diethylamine-NONOate), involved the phosphorylation of two residues located in the kinase activation loop, one being identified as Ser158. Our results indicate that NtOSAK does not undergo the direct chemical modifications of its cysteine residues by S-nitrosylation. Using a co-immunoprecipitation-based strategy, we identified several proteins present in immunocomplex with NtOSAK in salt-treated cells including the glycolytic enzyme GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Our results indicate that NtOSAK directly interacts with GAPDH in planta. Furthermore, in response to salt, GAPDH showed a transient increase in its S-nitrosylation level which was correlated with the time course of NtOSAK activation. However, GADPH S-nitrosylation did not influence its interaction with NtOSAK and did not have an impact on the activity of the protein kinase. Taken together, the results support the hypothesis that NtOSAK and GAPDH form a cellular complex and that both proteins are regulated directly or indirectly by NO.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/fisiologia , Nicotiana/enzimologia , Óxido Nítrico/fisiologia , Osmose/fisiologia , Proteínas de Plantas/fisiologia , Proteínas Quinases/metabolismo , Salinidade , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Células Cultivadas , Dados de Sequência Molecular , Proteínas Quinases/fisiologia , Nicotiana/citologia
5.
Front Plant Sci ; 9: 312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593767

RESUMO

Defects in RNA processing and degradation pathways often lead to developmental abnormalities, impaired hormonal signaling and altered resistance to abiotic and biotic stress. Here we report that components of the 5'-3' mRNA decay pathway, DCP5, LSM1-7 and XRN4, contribute to a proper response to a key plant hormone abscisc acid (ABA), albeit in a different manner. Plants lacking DCP5 are more sensitive to ABA during germination, whereas lsm1a lsm1b and xrn4-5 mutants are affected at the early stages of vegetative growth. In addition, we show that DCP5 and LSM1 regulate mRNA stability and act in translational repression of the main components of the early ABA signaling, PYR/PYL ABA receptors and SnRK2s protein kinases. mRNA decapping DCP and LSM1-7 complexes also appear to modulate ABA-dependent expression of stress related transcription factors from the AP2/ERF/DREB family that in turn affect the level of genes regulated by the PYL/PYR/RCAR-PP2C-SnRK2 pathway. These observations suggest that ABA signaling through PYL/PYR/RCAR receptors and SnRK2s kinases is regulated directly and indirectly by the cytoplasmic mRNA decay pathway.

6.
OMICS ; 15(12): 859-72, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22136638

RESUMO

The SnRK2 family members are plant-specific serine/threonine kinases involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. SnRK2s have been classed into three groups; group 1 comprises kinases not activated by ABA, group 2 comprises kinases not activated or activated very weakly by ABA, and group 3 comprises kinases strongly activated by ABA. So far, the ABA-dependent kinases belonging to group 3 have been studied most thoroughly. They are considered major regulators of plant response to ABA. The regulation of the plant response to ABA via SnRK2s pathways occurs by direct phosphorylation of various downstream targets, for example, SLAC1, KAT1, AtRbohF, and transcription factors required for the expression of numerous stress response genes. Members of group 2 share some cellular functions with group 3 kinases; however, their contribution to ABA-related responses is not clear. There are strong indications that they are positive regulators of plant responses to water deficit. Most probably they complement the ABA-dependent kinases in plant defense against environmental stress. So far, data concerning the physiological role of ABA-independent SnRK2s are very limited; it is to be expected they will be studied extensively in the nearest future.


Assuntos
Plantas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas/genética , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA