Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1869(2): 161-174, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29355591

RESUMO

Organized networks of heat shock proteins, which possess molecular chaperone activity, protect cells from abrupt environmental changes. Additionally, molecular chaperones are essential during stress-free periods, where they moderate housekeeping functions. During tumorigenesis, these chaperone networks are extensively remodeled in such a way that they are advantageous to the transforming cell. Molecular chaperones by buffering critical elements of signaling pathways empower tumor evolution leading to chemoresistance of cancer cells. Controversially, the same molecular chaperones, which are indispensable for p53 in reaching its tumor suppressor potential, are beneficial in adopting an oncogenic gain of function phenotype when TP53 is mutated. On the molecular level, heat shock proteins by unwinding the mutant p53 protein expose aggregation-prone sites leading to the sequestration of other tumor suppressor proteins causing inhibition of apoptosis and chemoresistance. Therefore, within this review therapeutic approaches combining classical immuno- and/or chemotherapy with specific inhibition of selected molecular chaperones shall be discussed.


Assuntos
Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
2.
J Biol Chem ; 285(42): 32020-8, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20688913

RESUMO

Hsp90 is a ubiquitous, ATP-dependent chaperone, essential for eukaryotes. It possesses a broad spectrum of substrates, among which is the p53 transcription factor, encoded by a tumor-suppressor gene. Here, we elucidate the role of the adenine nucleotide in the Hsp90 chaperone cycle, by taking advantage of a unique in vitro assay measuring Hsp90-dependent p53 binding to the promoter sequence. E42A and D88N Hsp90ß variants bind but do not hydrolyze ATP, whereas E42A has increased and D88N decreased ATP affinity, compared with WT Hsp90ß. Nevertheless, both of these mutants interact with WT p53 with a similar affinity. Surprisingly, in the case of WT, but also E42A Hsp90ß, the presence of ATP stimulates dissociation of Hsp90-p53 complexes and results in p53 binding to the promoter sequence. D88N Hsp90ß is not efficient in both of these reactions. Using a trap version of the chaperonin GroEL, which irreversibly captures unfolded proteins, we show that Hsp90 chaperone action on WT p53 results in a partial unfolding of the substrate. The ATP-dependent dissociation of p53-Hsp90 complex allows further folding of p53 protein to an active conformation, able to bind to the promoter sequence. Furthermore, in support of these results, the overproduction of WT or E42A Hsp90ß stimulates transcription from the WAF1 gene promoter in H1299 cells. Altogether, our research indicates that ATP binding to Hsp90ß is a sufficient step for effective WT p53 client protein chaperoning.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Humanos , Chaperonas Moleculares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/genética
3.
Cancers (Basel) ; 13(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34572735

RESUMO

Analyzing the TCGA breast cancer database, we discovered that patients with the HER2 cancer subtype and overexpression of MDM2 exhibited decreased post-treatment survival. Inhibition of MDM2 expression in the SKBR3 cell line (HER2 subtype) diminished the survival of cancer cells treated with doxorubicin, etoposide, and camptothecin. Moreover, we demonstrated that inhibition of MDM2 expression diminished DNA repair by homologous recombination (HR) and sensitized SKBR3 cells to a PARP inhibitor, olaparib. In H1299 (TP53-/-) cells treated with neocarzinostatin (NCS), overexpression of MDM2 WT or E3-dead MDM2 C478S variant stimulated the NCS-dependent phosphorylation of ATM, NBN, and BRCA1, proteins involved in HR DNA repair. However, overexpression of chaperone-dead MDM2 K454A variant diminished phosphorylation of these proteins as well as the HR DNA repair. Moreover, we demonstrated that, upon NCS treatment, MDM2 K454A interacted with NBN more efficiently than MDM2 WT and that MDM2 WT was degraded more efficiently than MDM2 K454A. Using a proliferation assay, we showed that overexpression of MDM2 WT, but not MDM2 K454A, led to acquisition of resistance to NCS. The presented results indicate that, following chemotherapy, MDM2 WT was released from MDM2-NBN complex and efficiently degraded, hence allowing extensive HR DNA repair leading to the acquisition of chemoresistance by cancer cells.

4.
FEBS J ; 275(19): 4875-86, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18754770

RESUMO

Murine double minute 2 (MDM2) protein exhibits many diverse biochemical functions on the tumour suppressor protein p53, including transcriptional suppression and E3 ubiquitin ligase activity. However, more recent data have shown that MDM2 can exhibit ATP-dependent molecular chaperone activity and directly mediate folding of the p53 tetramer. Analysing the ATP-dependent function of MDM2 will provide novel insights into the evolution and function of the protein. We have established a system to analyse the molecular chaperone function of MDM2 on another of its target proteins, the transcription factor E2F1. In the absence of ATP, MDM2 was able to catalyse inhibition of the DNA-binding function of E2F1. However, the inhibition of E2F1 by MDM2 was stimulated by ATP, and mutation of the ATP-binding domain of MDM2 (K454A) prevented the ATP-stimulated inhibition of E2F1. Further, ATP stabilized the binding of E2F1 to MDM2 using conditions under which ATP destabilized the MDM2:p53 complex. However, the ATP-binding mutant of MDM2 was as active as an E3 ubiquitin ligase on E2F1 and p53, highlighting a specific function for the ATP-binding domain of MDM2 in altering substrate protein folding. Antibodies to three distinct domains of MDM2 neutralized its activity, showing that inhibition of E2F1 is MDM2-dependent and that multiple domains of MDM2 are involved in E2F1 inhibition. Dimethylsulfoxide, which reduces protein unfolding, also prevented E2F1 inhibition by MDM2. These data support a role for the ATP-binding domain in altering the protein-protein interaction function of MDM2.


Assuntos
Trifosfato de Adenosina/metabolismo , Fator de Transcrição E2F1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/imunologia , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Oncotarget ; 8(47): 82123-82143, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137250

RESUMO

Utilizing the TCGA PANCAN12 dataset we discovered that cancer patients with mutations in TP53 tumor suppressor and overexpression of MDM2 oncogene exhibited decreased survival post treatment. Interestingly, in the case of breast cancer patients, this phenomenon correlated with high expression level of several molecular chaperones belonging to the HSPA, DNAJB and HSPC families. To verify the hypothesis that such a genetic background may promote chaperone-mediated chemoresistance, we employed breast and lung cancer cell lines that constitutively overexpressed heat shock proteins and have shown that HSPA1A/HSP70 and DNAJB1/HSP40 facilitated the binding of mutated p53 to the TAp73α protein. This chaperone-mediated mutated p53-TAp73α complex induced chemoresistance to DNA damaging reagents, like Cisplatin, Doxorubicin, Etoposide or Camptothecin. Importantly, when the MDM2 oncogene was overexpressed, heat shock proteins were displaced and a stable multiprotein complex comprising of mutated p53-TAp73α-MDM2 was formed, additionally amplifying cancer cells chemoresistance. Our findings demonstrate that molecular chaperones aid cancer cells in surviving the cytotoxic effect of chemotherapeutics and may have therapeutic implications.

6.
PLoS One ; 7(12): e51426, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251530

RESUMO

Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Substituição de Aminoácidos , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/citologia , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Estabilidade Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
J Biol Chem ; 284(17): 11517-30, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19188367

RESUMO

The MDM2 oncoprotein plays multiple regulatory roles in the control of p53-dependent gene expression. A picture of MDM2 is emerging where structurally discrete but interdependent functional domains are linked through changes in conformation. The domain structure includes: (i) a hydrophobic pocket at the N terminus of MDM2 that is involved in both its transrepressor and E3-ubiqutin ligase functions, (ii) a central acid domain that recognizes a ubiquitination signal in the core DNA binding domain of p53, and (iii) a C-terminal C2H2C4 RING finger domain that is required for E2 enzyme-binding and ATP-dependent molecular chaperone activity. Here we show that the binding affinity of MDM2s hydrophobic pocket can be regulated through the RING finger domain and that increases in pocket affinity are reflected by a gain in MDM2 transrepressor activity. Thus, mutations within the RING domain that affect zinc coordination, but not one that inhibits ATP binding, produce MDM2 proteins that have a higher affinity for the BOX-I transactivation domain of p53 and a reduced I(0.5) for p53 transrepression. An allosteric model for regulation of the hydrophobic pocket is supported by differences in protein conformation and pocket accessibility between wild-type and the RING domain mutant MDM2 proteins. Additionally the data demonstrate that the complex relationship between different domains of MDM2 can impact on the efficacy of anticancer drugs directed toward its hydrophobic pocket.


Assuntos
Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imidazóis/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Molecular , Dados de Sequência Molecular , Piperazinas/química , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/química
8.
J Chem Biol ; 2(3): 113-29, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19568783

RESUMO

The tumor suppressor p53 has evolved a MDM2-dependent feedback loop that promotes p53 protein degradation through the ubiquitin-proteasome system. MDM2 is an E3-RING containing ubiquitin ligase that catalyzes p53 ubiquitination by a dual-site mechanism requiring ligand occupation of its N-terminal hydrophobic pocket, which then stabilizes MDM2 binding to the ubiquitination signal in the DNA-binding domain of p53. A unique pseudo-substrate motif or "lid" in MDM2 is adjacent to its N-terminal hydrophobic pocket, and we have evaluated the effects of the flexible lid on the dual-site ubiquitination reaction mechanism catalyzed by MDM2. Deletion of this pseudo-substrate motif promotes MDM2 protein thermoinstability, indicating that the site can function as a positive regulatory element. Phospho-mimetic mutation in the pseudo-substrate motif at codon 17 (MDM2(S17D)) stabilizes the binding of MDM2 towards two distinct peptide docking sites within the p53 tetramer and enhances p53 ubiquitination. Molecular modeling orientates the phospho-mimetic pseudo-substrate motif in equilibrium over a charged surface patch on the MDM2 at Arg(97)/Lys(98), and mutation of these residues to the MDM4 equivalent reverses the activating effect of the phospho-mimetic mutation on MDM2 function. These data highlight the ability of the pseudo-substrate motif to regulate the allosteric interaction between the N-terminal hydrophobic pocket of MDM2 and its central acidic domain, which stimulates the E3 ubiquitin ligase function of MDM2. This model of MDM2 regulation implicates an as yet undefined lid-kinase as a component of pro-oncogenic pathways that stimulate the E3 ubiquitin ligase function of MDM2 in cells.

9.
J Biol Chem ; 282(45): 32603-12, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17848574

RESUMO

The murine double minute (mdm2) gene encodes an E3 ubiquitin ligase that plays a key role in the degradation of p53 tumor suppressor protein. Nevertheless recent data highlight other p53-independent functions of MDM2. Given that MDM2 protein binds ATP, can interact with the Hsp90 chaperone, plays a role in the modulation of transcription factors and protection and activation of DNA polymerases, and is involved in ribosome assembly and nascent p53 protein biosynthesis, we have evaluated and found MDM2 protein to possess an intrinsic molecular chaperone activity. MDM2 can substitute for the Hsp90 molecular chaperone in promoting binding of p53 to the p21-derived promoter sequence. This reaction is driven by recycling of MDM2 from the p53 complex, triggered by binding of ATP to MDM2. The ATP binding mutant MDM2 protein (K454A) lacks the chaperone activity both in vivo and in vitro. Mdm2 cotransfected in the H1299 cell line with wild-type p53 stimulates efficient p53 folding in vivo but at the same time accelerates the degradation of p53. MDM2 in which one of the Zn(2+) coordinating residues is mutated (C478S or C464A) blocks degradation but enhances folding of p53. This is the first demonstration that MDM2 possesses an intrinsic molecular chaperone activity, indicating that the ATP binding function of MDM2 can mediate its chaperone function toward the p53 tumor suppressor.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética
10.
J Biol Chem ; 279(47): 48836-45, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15358769

RESUMO

Immortalized human fibroblasts were used to investigate the putative interactions of the Hsp90 molecular chaperone with the wild-type p53 tumor suppressor protein. We show that geldanamycin or radicicol, specific inhibitors of Hsp90, diminish specific wild-type p53 binding to the p21 promoter sequence. Consequently, these inhibitors decrease p21 mRNA levels, which lead to a reduction in cellular p21/Waf1 protein, known to induce cell cycle arrest. In control experiments, we show that neither geldanamycin nor radicicol affect p53 mRNA levels. A minor decrease in p53 protein level following the treatment of human fibroblasts with the inhibitors suggests the potential involvement of Hsp90 in the stabilization of wild-type p53. To support our in vivo findings, we used a reconstituted system with highly purified recombinant proteins to examine the effects of Hsp90 on wild-type p53 binding to the p21 promoter sequence. The human recombinant Hsp90 alpha-isoform as well as bovine brain Hsp90 were purified to homogeneity. Both of these molecular chaperones displayed ATPase activity and the ability to refold heat-inactivated luciferase in a geldanamycin- and radicicol-sensitive manner, suggesting that post-translational modifications are not involved in the modulation of Hsp90alpha activity. We show that the incubation of recombinant p53 at 37 degrees C decreases the level of its wild-type conformation and strongly inhibits the in vitro binding of p53 to the p21 promoter sequence. Interestingly, Hsp90 in an ATP-dependent manner can positively modulate p53 DNA binding after incubation at physiological temperature of 37 degrees C. Other recombinant human chaperones from Hsp70 and Hsp40 families were not able to efficiently substitute Hsp90 in this reaction. Consistent with our in vivo results, geldanamycin can suppress Hsp90 ability to regulate in vitro p53 DNA binding to the promoter sequence. In summary, the results presented in this article state that chaperone activity of Hsp90 is important for the transcriptional activity of genotypically wild-type p53.


Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Proteína Supressora de Tumor p53/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Animais , Benzoquinonas , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Bovinos , Ciclo Celular , Linhagem Celular , Imunoprecipitação da Cromatina , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP90/química , Humanos , Lactamas Macrocíclicas , Lactonas/farmacologia , Luciferases/metabolismo , Macrolídeos , Modelos Biológicos , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas , Quinonas/farmacologia , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA